
A Particle Swarm Optimization Algorithm for Neighbor Selection in
Peer-to-Peer Networks

Shichang Sun1,3, Ajith Abraham2,4, Guiyong Zhang3, Hongbo Liu3,4

1School of Computer Science and Engineering, Dalian Nationalities University, Dalian 116600, China
2Centre for Quantifiable Quality of Service in Communication Systems

Faculty of Information Technology, Mathematics and Electrical Engineering,
Norwegian University of Science and Technology, N-7491 Trondheim, Norway

3Department of Computer Science, Dalian University of Technology, Dalian 116024, China
4School of Computer Science, Dalian Maritime University, Dalian 116026, China

ssc@dlnu.edu.cn, ajith.abraham@ieee.org, zgy197842@gmail.com, lhb@dlut.edu.cn

Abstract

Peer-to-peer (P2P) topology has significant influence on
the performance, search efficiency and functionality, and
scalability of the application. In this paper, we propose a
Particle Swarm Optimization (PSO) approach to the prob-
lem of Neighbor Selection (NS) in P2P Networks. Each
particle encodes the upper half of the peer-connection ma-
trix through the undirected graph, which reduces the search
space dimension. The results indicate that PSO usually re-
quired shorter time to obtain better results than Genetic Al-
gorithm (GA), specially for large scale problems.

1. Introduction

Peer-to-peer computing has attracted great interest and
attention of the computing industry and gained popularity
among computer users and their networked virtual commu-
nities [1]. It is no longer just used for sharing music files
over the Internet. Many P2P systems have already been
built for some new purposes and are being used. An increas-
ing number of P2P systems are used in corporate networks
or for public welfare (e.g. providing processing power to
fight cancer) [2]. P2P comprises peers and the connections
between these peers. These connections may be directed,
may have different weights and are comparable to a graph
with nodes and vertices connecting these nodes. Defining
how these nodes are connected affects many properties of
an architecture that is based on a P2P topology, which sig-
nificantly influences the performance, search efficiency and
functionality, and scalability of a system. A common diffi-
culty in the current P2P systems is caused by the dynamic
membership of peer hosts. This results in a constant reorga-

nization of the topology [3], [12], [13], [14], [15].
Kurmanowytsch et al. developed the P2P middleware

systems to provide an abstraction between the P2P topol-
ogy and the applications that are built on top of it [4]. These
middleware systems offer higher-level services such as dis-
tributed P2P searches and support for direct communica-
tion among peers. The systems often provide a pre-defined
topology that is suitable for a certain task (e.g., for ex-
changing files). Koulouris et al. presented a framework and
an implementation technique for a flexible management of
peer-to-peer overlays [5]. The framework provides means
for self-organization to yield an enhanced flexibility in in-
stantiating control architectures in dynamic environments,
which is regarded as being essential for P2P services to ac-
cess, routing, topology forming, and application layer re-
source management. In these P2P applications, a central
tracker decides about which peer becomes a neighbor to
which other peers. Koo et al. [6] investigated the neighbor-
selection process in the P2P networks, and proposed an ef-
ficient neighbor-selection strategy based on Genetic Algo-
rithm (GA).

Particle Swarm Optimization (PSO) algorithm is in-
spired by social behavior patterns of organisms that live and
interact within large groups. In particular, PSO incorporates
swarming behaviors observed in flocks of birds, schools
of fish, or swarms of bees, and even human social behav-
ior, from which the Swarm Intelligence(SI) paradigm has
emerged [7, 8]. It could be implemented and applied eas-
ily to solve various function optimization problems, or the
problems that can be transformed to function optimization
problems. As an algorithm, the main strength of PSO is
its fast convergence, which compares favorably with many
global optimization algorithms [9, 10]. In this paper, we
explore the neighbor-selection problem based PSO for P2P

6th International Conference on Computer Information
Systems and Industrial Management Applications (CISIM'07)
0-7695-2894-5/07 $20.00 © 2007

Networks.
This paper is organized as follows. We formulate the

problem in Section 2. The proposed approach based on par-
ticle swarm algorithm is presented in Section 3. In Section
4, experiment results and discussions are provided in detail,
followed by some conclusions in Section 5.

2. Neighbor-selection problem in P2P networks

Kooa et al. model the neighborhood selection problem
using an undirected graph and attempted to determine the
connections between the peers [6]. Given a fixed number
of N peers, we use a graph G = (V, E) to denote an over-
lay network, where the set of vertices V = {v1, · · · , vN}
represents the N peers and the set of edges E = {eij ∈
{0, 1}, i, j = 1, · · · , N} represents their connectivities :
eij = 1 if peers i and j are connected, and eij = 0
otherwise. For an undirected graph, it is required that
eij = eji for all i 6= j, and eij = 0 when i = j. Let
C be the entire collection of content pieces, and we denote
{ci ⊆ C, i = 1, · · · , N} to be the collection of the content
pieces each peer i has. We further assume that each peer
i will be connected to a maximum of di neighbors, where
di < N . The disjointness of contents from peer i to peer j
is denoted by ci \ cj , which can be calculated as:

ci \ cj = ci − (ci ∩ cj). (1)

where \ denotes the intersection operation on sets. This
disjointness can be interpreted as the collection of content
pieces that peer i has but peer j does not. In other words, it
denotes the pieces that peer i can upload to peer j. More-
over, the disjointness operation is not commutative, i.e.,
ci\cj 6= cj \ci. We also denote |ci\cj | to be the cardinality
of ci \ cj , which is the number of content pieces peer i can
contribute to peer j. In order to maximize the disjointness of
content, we want to maximize the number of content pieces
each peer can contribute to its neighbors by determining the
connections eij’s. Define εij’s to be sets such that εij = C
if eij = 1, and εij = ∅ (null set) otherwise. Therefore we
have the following optimization problem:

max
E

N∑

j=1

∣∣∣
N⋃

i=1

(ci \ cj) ∩ εij

∣∣∣ (2)

Subject to
N∑

j=1

eij ≤ di for all i

3. Particle swarm heuristic for NS

Given a P2P state S = (N, C, M, f), in which N is the
number of peers, C is the entire collection of content pieces,

M is the maximum number of the peers which each peer
can connect steadily in the session, f is to goal the number
of swap pieces, i.e. to maximize Equation (2). To apply the
particle swarm algorithm successfully for the NS problem,
one of the key issues is the mapping of the problem solution
into the particle space, which directly affects its feasibility
and performance. Usually, the particle’s position is encoded
to map each dimension to one directed connection between
peers, i.e. the dimension is N ∗N . But the neighbor topol-
ogy in P2P networks is an undirected graph, i.e. eij = eji

for all i 6= j. We set up a search space of D dimension as
N ∗ (N−1)/2. Accordingly, each particle’s position is rep-
resented as a binary bit string of length D. Each dimension
of the particle’s position maps one undirected connection.
The domain for each dimension is limited to 0 or 1.

The particle swarm model consists of a swarm of par-
ticles, which are initialized with a population of random
candidate solutions. They move iteratively through the
D-dimension problem space to search the new solutions,
where the fitness f can be measured by calculating the num-
ber of condition attributes in the potential reduction solu-
tion. Each particle has a position represented by a position-
vector ~pi (i is the index of the particle), and a velocity rep-
resented by a velocity-vector ~vi. Each particle remembers
its own best position so far in a vector ~p#

i , and its j-th di-
mensional value is p#

ij . The best position-vector among the
swarm so far is then stored in a vector ~p∗, and its j-th dimen-
sional value is p∗j . When the particle moves in a state space
restricted to zero and one on each dimension, the change of
probability with time steps is defined as follows:

P (pij(t) = 1) = f(pij(t−1), vij(t−1), p#
ij(t−1), p∗j (t−1)).

(3)
where the probability function is

sig(vij(t)) =
1

1 + e−vij(t)
. (4)

At each time step, each particle updates its velocity and
moves to a new position according to Eqs.(5) and (6):

vij(t) = wvij(t− 1) + c1r1(p
#
ij(t− 1)− pij(t− 1))

+ c2r2(p∗j (t− 1)− pij(t− 1))
(5)

pij(t) =

{
1 if ρ < sig(vij(t));
0 otherwise.

(6)

Where c1 is a positive constant, called as coefficient of the
self-recognition component, c2 is a positive constant, called
as coefficient of the social component. r1 and r2 are the ran-
dom numbers in the interval [0,1]. The variable w is called
as the inertia factor, which value is typically setup to vary
linearly from 1 to near 0 during the iterated processing. ρ is

6th International Conference on Computer Information
Systems and Industrial Management Applications (CISIM'07)
0-7695-2894-5/07 $20.00 © 2007

random number in the closed interval [0, 1]. From Eq.(5),
a particle decides where to move next, considering its cur-
rent state, its own experience, which is the memory of its
best past position, and the experience of its most successful
particle in the swarm. The particle has a priority levels ac-
cording to the order of peers. The sequence of the peers will
be not changed during the iteration. Each particle’s position
indicates the potential connection state. The pseudo-code
for the particle swarm search method is illustrated in Algo-
rithm 1.

Algorithm 1 Neighbor Selection Algorithm Based on Par-
ticle Swarm
01.Initialize the size of the particle swarm n, and other pa-
rameters.
02.Initialize the positions and the velocities for all the par-
ticles randomly.
03.While (the end criterion is not met) do
04. t = t + 1;
05. For s = 1 to n
06. For i = 1 to N
07. For j = 1 to N
08. If j == i, eij = 0;
09. If j < i, a = j; b = i;
10. If j > i, a = i; b = j;
11. eij = p[a∗N+b−(a+1)∗(a+2)/2];
12. if eij = 1, calculate ci \ cj ;
13. Next j

14. calculate f = f +
∣∣∣ ⋃N

i=1(ci \ cj) ∩ εij

∣∣∣;
15. Next i
16. Next s
17. ~p∗ = argminn

i=1(f(~p∗(t− 1)), f(~p1(t)),
17. f(~p2(t)), · · · , f(~pi(t)), · · · , f(~pn(t)));
18. For s = 1 to n
19. ~p#

i (t) = argminn
i=1(f(~p#

i (t− 1)), f(~pi(t));
20. For d = 1 to D
21. Update the d-th dimension value of ~pi and ~vi

22. according to Eqs.(5) and (6);
23. Next d
24. Next s
25.End While.

4. Algorithm performance demonstration

To illustrate the effectiveness and performance of the
particle swarm optimization algorithm, we illustrate an ex-
ecution trace of the algorithm for the NS problem. A file of
size 7 MB is divided into 14 pieces (512 KB each) to dis-
tribute, 6 peers download from the P2P networks, and the
connecting maximum number of each peer is 3, which is
represented as (6, 14, 3) problem. In some session, the state

of distributed file pieces is as follows:



1 0 0 4 0 6 7 8 0 10 0 12 0 14
0 0 0 4 5 0 7 0 9 0 11 0 13 0
0 2 0 0 0 6 0 0 0 0 11 12 0 14
0 2 3 4 0 6 0 0 0 0 11 0 0 0
0 2 0 0 0 0 7 8 0 10 0 12 0 14
1 2 0 0 5 0 0 0 9 10 11 0 13 14




The optimal result search by the proposed algorithm is
31, and the neighbor selection solution is illustrated below:




1 2 3 4 5 6
1 0 0 0 1 1 1
2 0 0 0 0 1 1
3 0 0 0 1 1 1
4 1 0 1 0 0 0
5 1 1 1 0 0 0
6 1 1 1 0 0 0




We test other three representative instances (prob-
lem (25,1400,12), problem (30,1400,15) and problem
(35,1400,17)) further. In our experiments, the algorithms
used for comparison were GA (Genetic Algorithm) and
PSO (Particle Swarm Optimization). The GA and PSO al-
gorithms share many similarities [11].

In a GA, a population of candidate solutions (for the op-
timization task to be solved) is initialized. New solutions
are created by applying reproduction operators (mutation
and crossover). The fitness (how good the solutions are) of
the resulting solutions are evaluated and suitable selection
strategy is then applied to determine which solutions will be
maintained into the next generation.

The PSO/GA algorithms were repeated 4 times with dif-
ferent random seeds. Each trial had a fixed number of 50 or
80 iterations. Other specific parameter settings of the algo-
rithms are described in Table 1. The average fitness values
of the best solutions throughout the optimization run were
recorded. The average and the standard deviation were cal-
culated from the 4 different trials. Figures 1, 2 and 3 illus-
trate the PSO/GA performance during the search processes
for the NS problem. As evident, PSO obtained better results
much faster than GA, especially for large scale problems.

5. Conclusions

In this paper, we investigated the problem of neighbor
selection in peer-to-peer networks using a particle swarm
optimization approach. In the proposed approach, the par-
ticle encodes the upper half matrix of the peer connection
through the undirected graph, which reduces the dimension
of the search space. We evaluated the performance of the
proposed PSO algorithm with GA. The results indicate that
PSO usually required shorter time to obtain better results

6th International Conference on Computer Information
Systems and Industrial Management Applications (CISIM'07)
0-7695-2894-5/07 $20.00 © 2007

Table 1. Parameter settings for the algo-
rithms.

Algorithm Parameter name value
size of the population int(10 + 2sqrt(D))

GA Probability of crossover 0.8
Probability of mutation 0.08
Swarm size int(10 + 2sqrt(D))
Self coefficient c1 2

PSO Social coefficient c2 2
Inertia weight w 0.9
Clamping Coefficient ρ 0.5

0 10 20 30 40 50
8720.5

8721

8721.5

8722

8722.5

8723

8723.5

8724

8724.5

8725

Iteration

f

GA
PSO

Figure 1. Performance for the NS (25, 1400, 12)

0 10 20 30 40 50
1.0517

1.0518

1.0518

1.0519

1.0519

1.0519

1.052

1.052
x 10

4

Iteration

f

GA
PSO

Figure 2. Performance for the NS (30, 1400, 15)

0 10 20 30 40 50 60 70 80
1.2328

1.2329

1.233

1.2331

1.2332

1.2333

1.2334

1.2335
x 10

4

Iteration

f

GA
PSO

Figure 3. Performance for the NS (35, 1400, 17)

than GA, specially for large scale problems. The proposed
algorithm could be an ideal approach for solving the NS
problem.

Our future work is targeted to test more complicated
instances in an online environment of P2P networks and
involve more intelligent/heuristics approaches.

Acknowledgments

This work was supported by NSFC (60573124) and
MOST (National Strategic Basic Research ‘973’ Program:
2005CB321904). Ajith Abraham is supported by the Cen-
tre for Quantifiable Quality of Service in Communication
Systems, Centre of Excellence, appointed by The Research
Council of Norway, and funded by the Research Council,
NTNU and UNINETT.

References

[1] S. Kwok. “P2P searching trends: 2002-2004”. Information
Processing and Management 2006, 42, 237–247.

[2] T. Idris and J. Altmann. “A Market-managed topology forma-
tion algorithm for peer-to-peer file sharing networks”. Lecture
Notes in Computer Science 4033, 2006, pp. 61–77.

[3] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and I.
Stoica. “Load balancing in dynamic structured peer-to-peer
systems”. Performance Evaluation 2006, 63, pp. 217–240.

[4] R. Kurmanowytsch, E. Kirda, C. Kerer, and S. Dustdar. “OM-
NIX: A topology-independent P2P middleware”. Proceedings
of The 15th Conference on Advanced Information Systems En-
gineering (CAiSE’03), 2003.

[5] T. Koulouris, R. Henjes, K. Tutschku, and H. de Meer. “Im-
plementation of adaptive control for P2P overlays”. Lecture
Notes in Computer Science, 2982, 2004, pp. 292–306.

[6] S.G.M. Koo, K. Kannan, C.S.G. Lee. “On neighbor-selection
strategy in hybrid peer-to-peer networks”. Future Generation
Computer Systems, 2006, 22, pp. 732–741.

6th International Conference on Computer Information
Systems and Industrial Management Applications (CISIM'07)
0-7695-2894-5/07 $20.00 © 2007

[7] J. Kennedy, and R. Eberhart. Swarm Intelligence. Morgan
Kaufmann, CA, 2001.

[8] M. Clerc. Particle Swarm Optimization. ISTE Publishing
Company, London, 2006.

[9] A. Abraham, H. Guo, and H. Liu. “Swarm intelligence: foun-
dations, perspectives and applications”. Swarm Intelligent
Systems, Studies in Computational Intelligence, N. Nedjah,
L. Mourelle (eds.), Springer Verlag, 2006, pp. 3–25.

[10] H. Liu, S. Sun, and A. Abraham. “Particle swarm ap-
proach to scheduling work-flow applications in distributed
data-intensive computing environments”. Proceedings of The
Sixth International Conference on Intelligent Systems Design
and Applications, (ISDA’06), IEEE Computer Society Press,
2006, pp. 661–666.

[11] A. Abraham, Evolutionary Computation, Handbook for
Measurement Systems Design, Peter Sydenham and Richard
Thorn (Eds.), John Wiley and Sons Ltd., London, ISBN 0-
470-02143-8, (2005) pp. 920-931.

[12] H. Duan, X. Lu, H. Tang, X. Zhou, Z. Zhao, Proximity
Neighbor Selection in Structured P2P Network, Sixth IEEE
International Conference on Computer and Information Tech-
nology (CIT’06), 2006, p. 52.

[13] S.G.M. Koo, K. Kannan, C.S.G. Lee, A genetic-algorithm-
based neighbor-selection strategy for hybrid peer-to-peer net-
works, in: Proceedings of the 13th IEEE International Con-
ference on Computer Communications and Networks, IC-
CCN04, Chicago, IL, October 2004, pp. 469474.

[14] R. Schollmeier, A definition of peer-to-peer networking for
the classification of peer-to-peer architectures and applica-
tions, in: Proc. the First International August Conference on
Peer-to-Peer Computing, P2P 01, Lingkoping, Sweden, Au-
gust 2001, pp. 101102.

[15] D. Ghosal, B.K. Poon and K. Kong, P2P contracts: a frame-
work for resource and service exchange, Future Generation
Computer Systems 21 (2005), pp. 333347.

6th International Conference on Computer Information
Systems and Industrial Management Applications (CISIM'07)
0-7695-2894-5/07 $20.00 © 2007

