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This paper presents an application of swarm intelligence technique namely artificial bee colony (ABC) to

extract the small signal equivalent circuit model parameters of GaAs metal extended semiconductor

field effect transistor (MESFET) device and compares its performance with particle swarm optimization

(PSO) algorithm. Parameter extraction in MESFET process involves minimizing the error, which is

measured as the difference between modeled and measured S parameter over a broad frequency range.

This error surface is viewed as a multi-modal error surface and robust optimization algorithms are

required to solve this kind of problem. This paper proposes an ABC algorithm that simulates the

foraging behavior of honey bee swarm for model parameter extraction. The performance comparison of

both the algorithms (ABC and PSO) are compared with respect to computational time and the quality of

solutions (QoS). The simulation results illustrate that these techniques extract accurately the

16—element small signal model parameters of MESFET. The efficiency of this approach is demonstrated

by a good fit between the measured and modeled S-parameter data over a frequency range of 0.5–

25 GHz.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Small signal model parameter extraction of MESFET involves
extraction of extrinsic and intrinsic model element values (Lin
and Kompa, 1994) by minimizing the difference between modeled
and measured S-parameter over a broad range of frequencies. In
the recent past, different techniques (Yaser, 2000; Van Niekerk
et al., 2000) have been reported in the literature for extracting the
model parameters of MESFET. These techniques are normally
based on either analytical or numerical optimization techniques.
Although analytical methods provide faster solution, the quality
of solution (QoS) is normally poor. To improve QoS, methods
based on numerical optimization are being increasingly used for
parameter extraction. Numerical optimization techniques are
either gradient-based or gradient-free. Possibility of having a
multimodal error surface is an important extraction challenge in
parameter extraction problem. In order to find a quality solution,
an extraction algorithm that can achieve the global minima in
multimodal error surface is required. However, the conventional
gradient based approach that are used in past, can easily be
trapped in local minima. Many researchers have proposed global
ll rights reserved.
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optimization techniques like genetic algorithm (GA) (Gao, 2001;
Watts et al., 1999; Menozzi et al., 1996) to extract the small signal
model parameters of the MESFET.

Since a typical small signal parameter extraction problem has a
multimodal error surface and it involves a large set (i.e. 16
number of elements), conventional gradient based techniques
fails to provide QoS. In some cases, GA cannot guarantee global
solution due to the diversity of population (Leung et al., 1997).
Swarm intelligence has become a research interest to different
domain of researchers in recent years. These algorithms simulate
the food foraging behavior of a flock of birds or swarm of bees.
Particle swarm optimization and its variants have been intro-
duced for solving numerical optimization problems and success-
fully applied to solve many real world problems (Eberhart and
Kenedy, 1995b; Sabat et al., 2009 , 2010). PSO algorithm is a
population based stochastic optimization technique and suitable
for optimizing nonlinear multimodal error function. Motivated by
the foraging behavior of honeybees, researchers have (Riley et al.,
2005; Karaboga, 2009) initially proposed artificial bee colony
(ABC) algorithm for solving various optimization problems. ABC is
a relatively new population-based meta-heuristic approach and is
further improved by Karaboga and Basturk (2008). This algorithm
is easy to implement and found to be robust. Some recent results
illustrate that artificial bee colony (ABC) algorithms outperforms
basic PSO algorithm in terms of QoS (Karaboga and Basturk,
2008). The PSO and ABC algorithms are population based
orithm for small signal model parameter extraction of MESFET.
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Fig. 1. Schematic diagram of MESFET small signal model.

Table 1
Model element/subfunction used for 16 element MESFET model.

No. Model element Bias dependent subfunction to be minimized

1 Cgs, Ri Yes S11 at specific bias point

2 Cgd Yes S12 at specific bias point

3 gm ; t Yes S21 at specific bias point

4 Cds, Rds Yes S22 at specific bias point

5 Cpg, Rg, Lg No S11 at all the bias point

6 Cpd, Rd, Ld No S22 at all the bias point

7 Rs, Ls No S12 at all the bias point
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evolutional meta-heuristic optimization algorithms that avoids
trapping of solution in local minima. The objective of this paper is
to use ABC algorithm for extracting the small signal parameters
and to compare relative performances in terms of computational
cost and QoS with that of basic PSO algorithm.

Fig. 1 shows a 16 element small signal equivalent circuit adopted
for parameter extraction. It has eight extrinsic and eight intrinsic
parameters. Extrinsic parameters are bias independent whereas
intrinsic parameters are bias dependent. The methodology for
extracting these parameters essentially involves minimization of
the difference between measured and modeled S-parameter values
under dc bias conditions.

Rest of the paper is organized as follows: Section 2 presents a
brief description of the model parameter extraction strategies and
formulation of the problem. Brief descriptions of PSO and ABC
algorithms are provided in Sections 3 and 4, respectively. Section 5
presents the simulation results. Conclusions are drawn in Section 6.
2. Parameter extraction problem in MESFET

The main objective of small signal model parameter extraction
problem is to minimize the difference between measured and
simulated S-parameter at different bias points.

The fitness function is defined as

FðxÞ ¼
XN

i ¼ 1

½aiðxÞ�
2 ð1Þ

where

aiðxÞ ¼
XM
t ¼ 1

X2

j ¼ 1

X2

k ¼ 1

1

sjkðt;wiÞ
jSjkðt;wiÞ�Ŝ jkðt;wiÞj

2 ð2Þ

and

sjkðt;wiÞ ¼ jŜjkðt;wiÞjmax ð3Þ

Eq. (1) is the sum of errors at all the frequencies and Eq. (2) is the
modeling error at all the bias points for all the four S-parameters
at i th frequency wi. The measured and modeled S-parameters of
the MESFET at i th frequency and t th bias point are Sjk(t,wi) and
Ŝjkðt;wiÞ, respectively. M is the number of bias points and N is the
number of frequency points used in measurement. j and k are the
indices of the four S-parameters. sjkðtÞ is a normalization constant
at t th bias point. x is the vector that has all the bias independent
and bias dependent parameters need to be extracted.
Please cite this article as: Sabat, S.L., et al., Artificial bee colony alg
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This fitness function (see Eq. (1)) can be divided into two parts,
one for extracting bias independent model parameters and the
other for extracting bias dependent model parameters. Bias
dependent model parameters are associated with a modeling
error due to the associated S-parameters at specified bias point as
in Table 1. The fitness sub-function is given by

fextðwÞ ¼
XN

i ¼ 1

jSjkðt;wiÞ�Ŝjkðt;wiÞj
2 ð4Þ

similarly for obtaining bias independent model parameters, the
fitness sub-function is defined as

fintðxÞ ¼
XN

i ¼ 1

XM
t ¼ 1

1

sjkðt;wiÞ
jSjkðt;wiÞ�Ŝjkðt;wiÞj

 !2

ð5Þ

Table 1 presents different model parameters and their
dependence with different S-parameters. For analysis purposes,
the small signal equivalent circuit elements of MESFET, see Fig. 1,
are grouped into two set of parameters: extrinsic and intrinsic.
The extrinsic set consist of bias independent elements associated
with the leads and contacts to the device such as Cpg, Cpd, Lg, Ld, Ls,
Rg, Rd, and Rs. The intrinsic set consists of bias dependent
parameters such as Cgs, Ri, Cgd, Rgd, Cds, Rds and gm, t.

The technique employed for parameter extraction is imple-
mented in two stages. In the first stage, the extrinsic parameters
are extracted from measured S-parameters under cold bias
conditions i.e., Vds=0 V and VgsoVp, where Vp is pinch-off voltage.
Intrinsic parameters are extracted from measured S-parameters
under hot bias condition (Vds40 V and Vgso0 V) using suitable
de-embedding technique in the second stage. Parameters to be
extracted are initialized, each within carefully chosen and well
defined range at the beginning of the extraction algorithm.

Different S parameter values are optimized for obtaining the
different set of model elements of the equivalent circuit (Lin and
orithm for small signal model parameter extraction of MESFET.
6/j.engappai.2010.01.020
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Kompa, 1994). The parameter extraction procedure is summarized
below:
1.
P
E

Measure S-parameter data in cold bias condition.

2.
 Optimize S11 to extract Lg, Rg and Cpg; optimize S22 to extract Ld,

Rd, Cpd and S12 to extract Ls and Rs.

3.
 Measure S-parameter data in hot bias condition

4.
 Subtract the effect of extrinsic parasitics from the measured S-

parameter data by the de-embedding technique (Lin and
Kompa, 1994).
5.
 Optimize S11 to extract Cgs, Ri; Optimize S12 to extract Cgd, Rgd;
similarly optimize S21 to extract gm and S22 to extract Cds, Rds.
3. Particle swarm optimization (PSO) algorithm

This section provides a brief introduction of the PSO technique
and its application to model parameter extraction of MESFET.

PSO algorithm is a stochastic population based algorithm
proposed by Eberhart and Kenedy (1995a). This algorithm is inspired
by the social behavior of bird flocking and fish schooling. The PSO
algorithm is simple, robust and easy to implement. In PSO, a set of
particles (NP) in the swarm is defined. Each particle is characterized
by its position and velocity and constitutes a potential solution in the
solution space. The number of parameters to be optimized
determines the dimension of the problem. Each particle is evaluated
based on the fitness function to be optimized. In the beginning, all the
particles are initialized randomly in the D-dimension search space
within the predefined range. The position and velocity of i th particle
ði¼ 1;2; . . . ;NPÞ in the D th dimension are represented as Xi ¼ ðxi1;

xi2; xi3; . . . xiDÞ and Vi ¼ ðvi1; vi2; vi3; . . . viDÞ, respectively. Each particle
updates its position and velocity based on its own best position,
(pbest) as well as the best position of the entire swarm (gbest).

While in the search process, each particle remembers its
previous best solution, and if the current solution is better than
the previous best solution, the position corresponding to current
solution becomes the pbest; otherwise it remains unchanged. The
best among all pbest solution is the gbest solution and the position
corresponding to gbest value are the potential solutions of the
problem. Each particle updates its velocity and position according
to its flying trajectory by the following:

Vtþ1
i;d ¼wt � Vt

i;dþct
1 � rand1 � ðpbestt

i;d�Xt
i;dÞþct

2 � rand2 � ðgbestt
d�Xt

i;dÞ

ð6Þ

Xtþ1
i;d ¼ Xt

i;dþVtþ1
i;d ð7Þ

where w represents inertia weight, c1 and c2 are learning factors
which determine the relative influence of cognitive and social
components, respectively. In this paper, the values of w, c1 and c2

are linearly decreased (adapted) with iteration (Shi and Eberhart,
1998; Ratnaweera et al., 2004; Sabat and Ali, 2008). rand1 and
rand2 are independent random numbers uniformly distributed in
the range [0,1]. Vi,d

t , Xi,d
t and pbesti,d

t are the velocity, position and
the personal best of i th particle in d th dimension for the t th
iteration, respectively. The gbestd

t is the d th dimension of best
particle in the swarm for the t th iteration.
4. Artificial bee colony algorithm

The foraging bees are classified into three categories; employed
bees, onlookers and scout bees. All bees that are currently
exploiting a food source are known as employed. The employed

bees exploit the food source (NFS) and they carry the information
lease cite this article as: Sabat, S.L., et al., Artificial bee colony alg
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about food source back to the hive and share this information with
onlooker bees. Onlookers bees are waiting in the hive for the
information to be shared by the employed bees about their
discovered food sources and scouts bees will always be searching
for new food sources near the hive. Employed bees share
information about food sources by dancing in the designated
dance area inside the hive. The nature of dance is proportional to
the nectar content of food source just exploited by the dancing
bee. Onlooker bees watch the dance and choose a food source
according to the probability proportional to the quality of that food
source. Therefore, good food sources attract more onlooker bees
compared to bad ones. Whenever a food source is exploited fully,
all the employed bees associated with it abandon the food source,
and become scout. Scout bees can be visualized as performing the
job of exploration, whereas employed and onlooker bees can be
visualized as performing the job of exploitation.

In the ABC algorithm (Karaboga and Basturk, 2008), each food
source is a possible solution for the problem under consideration
and the nectar amount of a food source represents the quality of
the solution represented by the fitness value. The number of food
sources is same as the number of employed bees and there is
exactly one employed bee for every food source.

This algorithm starts by associating all employed bees with
randomly generated food sources (solution). In each iteration,
every employed bee determines a food source in the neighbor-
hood of its current food source and evaluates its nectar amount
(fitness). The i th food source position is represented as
Xi ¼ ðxi1; xi2; . . . ; xidÞ. F(Xi) refers to the nectar amount of the food
source located at Xi. After watching the dancing of employed bees,
an onlooker bee goes to the region of food source at Xi by the
probability pi defined as

pi ¼
FðXiÞPS

k ¼ 1 FðXkÞ
ð8Þ

where S is total number of food sources. The onlooker finds a
neighborhood food source in the vicinity of Xi by using

Xiðtþ1Þ ¼ XiðtÞþdij � u ð9Þ

where dij is the neighborhood patch size for j th dimension of i th
food source defined as

dij ¼ xij�xkj ð10Þ

where k is a random number Að1;2; . . . ; SÞ and ka i, u is random
uniform variate A ½�1;1�.

If its new fitness value is better than the best fitness value
achieved so far, then the bee moves to this new food source
abandoning the old one, otherwise it remains in its old food
source. When all employed bees have finished this process, they
share the fitness information with the onlookers, each of which
selects a food source according to probability given in Eq. (8).
With this scheme, good food sources will get more onlookers than
the bad ones. Each bee will search for better food source around
neighborhood patch for a certain number of cycle (limit), and if the
fitness value will not improve then that bee becomes scout bee.

4.1. Pseudocode for ABC algorithm
orith
6/j.e
1:
 Initialize

2:
 REPEAT.

3:
 Move the employed bees onto their food source and

evaluate the fitness

4:
 Move the onlookers onto the food source and evaluate their

fitness

5:
 Move the scouts for searching new food source

6:
 Memorize the best food source found so far

7:
 UNTIL (termination criteria satisfied)
m for small signal model parameter extraction of MESFET.
ngappai.2010.01.020
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Table 4
List of extracted extrinsic parameters using PSO.

Parameter Minimum Maximum Mean Best Std. deviation

Lg(pH) 10.08 19.11 13.98 16.53 3.54

Ld(pH) 10.06 22.42 13.25 10.25 4.46

Ls(pH) 21.57 45.83 37.55 21.75 7.73

Rg ðOÞ 1.00 1.45 1.06 1.01 0.13

RdðOÞ 1.09 2.75 1.9 2.23 0.60

RsðOÞ 1.45 3.92 2.78 1.45 0.85

Cpg(fF) 33.1 34.98 34.51 34.04 0.59

Cpd(fF) 74.12 74.99 74.75 74.65 0.27

Table 5
List of extracted extrinsic parameters using ABC.

Parameter Minimum Maximum Mean Best Std. deviation

Lg(pH) 13.07 24.07 18.66 13.11 4.11

Ld(pH) 15.91 39.77 26.09 23.77 9.1

Ls(pH) 10.00 10.04 10.01 10.04 0.01

Rg ðOÞ 1.30 1.45 1.39 1.32 0.06

RdðOÞ 2.03 3.08 2.44 2.31 0.36

RsðOÞ 1.00 1.00 1.00 1.00 0.00

Cpg(fF) 33.1 34.92 34.1 34.5 0.01

Cpd(fF) 74.1 74.92 74.81 74.8 0.01

Table 6
List of extracted intrinsic parameters using PSO.

Parameter Minimum Maximum Mean Best Std. deviation
5. Experimental results and discussions

S-parameter data of a fabricated MESFET with gate length of
0:7mm and gate width of 600mm (4� 150) are measured in the
laboratory using network analyzer in the frequency range from
0.5 to 25 GHz. Bias point of Vgs = �1.0 V and Vds = 4.25 V is fixed
for the analysis. The bias value is chosen such that the device can
be used for amplifier purpose. Small signal model parameter
values are obtained by minimizing the difference between
measured and modeled S-parameters using basic PSO and ABC
algorithm. The algorithms are simulated in an Intel Core 2 duo
processor with 2.0 GHz frequency and 1.0 GB RAM using MATLAB
2007a. The algorithmic parameters are tabulated in Table 2.

The search range for model parameters are tabulated in
Table 3. Each algorithms are simulated 50 times. Performance
indicator parameters such as minimum, maximum, mean and
standard deviation values of extracted model parameters are
tabulated in Tables 4–7.

Tables 4 and 5 give the summary of the extracted extrinsic
elements using basic PSO, and ABC algorithms, respectively.
Tables 6 and 7 show the summary of extracted intrinsic element
values using basic PSO and ABC algorithms, respectively.

It is clearly evident from Tables 4 to 7 that ABC algorithm
performance is better compared to PSO algorithm in terms of both
performance evaluation parameters namely standard deviation
and relative error between measured and modeled data.

Figs. 2–5 compares the modeled and measured S-parameters
for the bias point Vgs = �1.0 V; Vds = 4.25 V. The comparison
shows that in ABC algorithm, the parameters are within small
standard deviation, and relative error for all the S-parameters are
small compared to PSO algorithm. Table 9 provides a comparative
results of the amplitude and phase relative error between
measured and modeled S-parameters. Convergence time and

S.L. Sabat et al. / Engineering Applicati4
Table 2
Algorithmic parameters.

Parameters Basic PSO ABC

No. of particles/bees 20 20

No. of iterations 1000 1000

c1 Varies with iteration Not required

c2 Varies with iteration Not required

w Varies with iteration Not required

No. of bees Not required 20

No. of food sources Not required 10

Limit number Not required 30

Table 3
Search range of extracted extrinsic and intrinsic parameters.

Parameter Search range (min) Search range (max)

Lg(pH) 10 100

Ld(pH) 10 100

Ls(pH) 10 100

RgðOÞ 1 4

RdðOÞ 1 4

RsðOÞ 1 4

Cpg(fF) 12 35

Cpd(fF) 25 75

Cgs(fF) 200 400

RiðOÞ 0.1 5.0

Cgd(fF) 40 80

RgdðOÞ 12 20

Cds(pF) 40 80

RdsðOÞ 110 170

gm(S) 0.02 0.06

tðpsÞ 1.5 5.5

Cgs(pF) 0.39 0.39 0.39 0.39 0.00

RiðOÞ 0.10 0.119 0.104 0.10 0.005

Cgd(fF) 49.92 76.86 64.25 58.74 7.71

RgdðOÞ 16.86 19.94 19.23 16.96 1.14

Cds(fF) 52.46 78.15 69.86 55.22 8.57

RdsðOÞ 142.52 144.24 142.81 144.00 0.61

gm(S) 0.055 0.059 0.058 0.058 0.00

tðpsÞ 1.97 2.74 2.29 2.74 0.21

Table 7
List of extracted intrinsic parameters using ABC.

Parameter Minimum Maximum Mean Best Std. deviation

Cgs(pF) 0.3 0.377 0.32 0.354 0.01

RiðOÞ 1.23 4.18 2.68 4.01 1.10

Cgd(fF) 56.67 60.55 58.12 60.22 1.18

RgdðOÞ 10.00 10.00 10.00 10.00 0.00

Cds(fF) 40.00 44.43 41.62 41.10 1.72

RdsðOÞ 148.92 151.94 150.17 149.32 1.1

gm(S) 0.057 0.058 0.057 0.058 0.00

tðpsÞ 1.73 4.01 2.83 3.21 0.7

Please cite this article as: Sabat, S.L., et al., Artificial bee colony alg
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number of iterations required for PSO and ABC algorithms are
tabulated in Table 8. The tabular results of Table 9 indicates the
superiority of ABC algorithm in terms of accuracy. Both Tables 8
and 9 indicate the better performance of ABC algorithm in terms
of accuracy and convergence time compared to PSO.

The main advantages of the proposed technique is that it is not
sensitive to initial parameter values and also not affected by
increasing the dimension of problem. Empirical results illustrate
orithm for small signal model parameter extraction of MESFET.
6/j.engappai.2010.01.020
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Table 8
Convergence time comparison of algorithms.

Algorithm Conv. time (iterations, secs)
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that the proposed algorithm possesses high accuracy and also
provides physical significant values of the extracted parameters.
PSO 1000, 180

ABC 200, 145

Table 9
Relative error performance comparison of different algorithms.

Parameter PSO ABC

jS11j 0.255 0.011

/S11 2.133 0.015

jS12j 0.023 0.058

/S12 1.0 0.65

jS21j 0.47 0.011

/S21 1.0 0.232

jS22j 0.245 0.042

/S22 2.50 0.029
6. Conclusions

In this paper, the artificial bee colony (ABC) algorithm, which is
a new, simple and robust optimization algorithm, is used to
extract small signal model parameters of a fabricated GaAs
MESFET from measured S-parameter data. The performance of
the proposed algorithm is compared with the particle swarm
optimization (PSO) algorithm. These algorithms are able to
successively extract the small signal model parameters of
MESFET. The results reveal that ABC is more robust and has less
relative error between the measured and modeled S-parameters
compared to PSO algorithm. ABC algorithms also converges faster
compared to PSO algorithm for this problem. Moreover, in these
swarm intelligence strategy no user intervention is required for
Please cite this article as: Sabat, S.L., et al., Artificial bee colony algorithm for small signal model parameter extraction of MESFET.
Engineering Applications of Artificial Intelligence (2010), doi:10.1016/j.engappai.2010.01.020

dx.doi.org/10.1016/j.engappai.2010.01.020


ARTICLE IN PRESS

S.L. Sabat et al. / Engineering Applications of Artificial Intelligence ] (]]]]) ]]]–]]]6
model parameter extraction unlike gradient descent approach. In
future, we will study the possible variations of ABC and PSO to
further improve the performance.
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