
Optimal Design of Hierarchical Wavelet
Networks for Time-series Forecasting

Yuehui Chen1, Bo Yang1 and Ajith Abraham1,2 ∗

1- School of Information Science and Engineering
Jinan University, Jinan 250022, P.R. China

2- IITA Professorship Program, School of Computer Science
Chung-Ang University, Seoul, Republic of Korea

Abstract. The purpose of this study is to identify the Hierarchical
Wavelet Neural Networks (HWNN) and select important input features
for each sub-wavelet neural network automatically. Based on the pre-
defined instruction/operator sets, a HWNN is created and evolved using
tree-structure based Extended Compact Genetic Programming (ECGP),
and the parameters are optimized by Differential Evolution (DE) algo-
rithm. This framework also allows input variables selection. Empirical
results on benchmark time-series approximation problems indicate that
the proposed method is effective and efficient.

1 Introduction

There are three basic multilevel structures for hierarchical models, namely, in-
cremental, aggregated and cascaded. Designing of these hierarchical models
faces many difficulties including determination of the hierarchical structure, pa-
rameter identification and input variables selection for each sub-models. To
investigate the hybrid technique further, a HWNN framework is proposed in
this paper. Based on the pre-defined instruction/operator sets, a HWNN net-
work can be created and evolved. HWNN allows input variables selection. In
our previous studies, in order to optimize Flexible Neural Tree (FNT) the hierar-
chical structure was evolved using Probabilistic Incremental Program Evolution
algorithm (PIPE) [1][2] and Ant Programming [3] with specific instructions. In
this research, the hierarchical structure is evolved using the Extended Compact
Genetic Programming, a tree-structure based evolutionary algorithm. The fine
tuning of the parameters encoded in the structure is accomplished using Differ-
ential Evolution (DE) [4]. The proposed method interleaves both optimizations.
Starting with random structures and corresponding parameters, it first tries to
improve the structure and then as soon as an improved structure is found, it fine
tunes its parameters. It then goes back to improving the structure again and,
fine tunes the structure and parameters. This loop continues until a satisfactory
solution is found or a time limit is reached. The novelty of this paper is in the
usage of HWNN model for selecting the important variables and for improving
the time-series forecasting problems.

∗This research was partially supported by the Natural Science Foundation of China under
grant No. 60573065, and the Provincial Science and Technology Development Program of
Shandong under grant No. SDSP2004-0720-03.

2 Wavelet Neural Network

In terms of wavelet transformation theory, wavelets are expressed in the following
form:

Ψ = {Ψi = |ai|− 1
2 ψ(

x− bi

ai
) : ai,bi ∈ Rn, i ∈ Z}, (1)

where x = (x1, x2, . . . , xn), ai = (ai1, ai2, . . . , ain), bi = (bi1, bi2, . . . , bin) are a
family of functions generated from one single function ψ(x) by the operation of
dilation and translation. ψ(x), which is localized in both the time space and
the frequency space, is called a mother wavelet and the parameters ai and bi are
named the scale and translation parameters and x represents the inputs to the
WNN model.

In the standard form of wavelet neural network, the output of a WNN is
given by

f(x) =
M∑

i=1

ωiΨi(x) =
M∑

i=1

ωi|ai|− 1
2 ψ(

x− bi

ai
) (2)

where ψi is the wavelet activation function of ith unit of the hidden layer and
ωi is the weight connecting the ith unit of the hidden layer to the output layer
unit. Note that for the n-dimensional input space, the multivariate wavelet
basis function can be calculated by the tensor product of n single wavelet basis
functions as ψ(x) =

∏n
i=1 ψ(xi).

3 Hierarchical Wavelet Neural Network

In order to generate and optimize a mutilevel HWNN model, a tree-structural
representation is adopted. For generating the tree, a function set F and a
terminal instruction set T are described as S = F

⋃
T = {+2, +3, . . . , +N}

⋃
{x1, . . . , xn}, where +i(i = 2, 3, . . . , N) denote non-leaf nodes’ instructions and
taking i arguments. x1,x2,. . . ,xn are leaf nodes’ instructions and taking no other
arguments. The output of a non-leaf node is calculated as a wavelet neural net-
work model by Eqn.(2). From this point of view, the instruction +i is also called
a WNN operator with i inputs.

The WNN operator is shown in Figure 1 (left). In this research, the mother
wavelet ψ(x) = −xexp(−x2

2) is used for both experiments, and the number of
wavelet basis functions in hidden layer is same with the number of inputs, that
is, m = n.

In the creation process of HWNN tree, if a nonterminal instruction, i.e.,
+i(i = 2, 3, 4, . . . , N) is selected, i real values are randomly generated and used
for representing the connection strength between the node +i and its children.
In addition, 2 × n2 adjustable parameters ai and bi are randomly created as
dilation and translation parameters of the wavelet basis functions. The output
of the node +i can be calculated by using Eqn. (2). The overall output of HWNN
tree can be computed from left to right by depth-first method, recursively.

x1

xn

y
ψ
1

ψm

ω1

ωm

.

.

.
Σ

+6

+3

+3+2+3

+2x1

x1

x1

x2

x2

x2 x2

x3

x3

x3x3 x1 x2 x3
Fig. 1: A WNN operator (left), and a tree-structural representation of a HWNN
with function instruction set F = {+2, +3, +4,+5,+6}, and terminal instruction
set T = {x1, x2, x3} (right)

3.1 Tree Structure Optimization.

Finding an optimal or near-optimal HWNN is formulated as a product of evo-
lution. The Extended Compact Genetic Programming (ECGP) [6] is employed
to find an optimal or near-optimal HWNN structure.

ECGP is a direct extension of ECGA to the tree representation which is based
on the PIPE prototype tree. In ECGA, Marginal Product Models (MPMs) are
used to model the interaction among genes, represented as random variables,
given a population of Genetic Algorithm individuals. MPMs are represented as
measures of marginal distributions on partitions of random variables. ECGP is
based on the PIPE prototype tree, and thus each node in the prototype tree
is a random variable. ECGP decomposes or partitions the prototype tree into
sub-trees, and the MPM factorises the joint probability of all nodes of the proto-
type tree, to a product of marginal distributions on a partition of its sub-trees.
A greedy search heuristic is used to find an optimal MPM mode under the
framework of minimum encoding inference. ECGP can represent the probability
distribution for more than one node at a time. Thus, it extends PIPE in that
the interactions among multiple nodes are considered.

3.2 Parameter Optimization with DE algorithm

The DE algorithm was first introduced by Storn and Price in 1995 [4] [5]. It
resembles the structure of an evolutionary algorithm (EA), but differs from tra-
ditional EAs in its generation of new candidate solutions and by its use of a
’greedy’ selection scheme. DE works as follows: First, all individuals are ran-
domly initialized and evaluated using the fitness function provided. Afterwards,
the following process will be executed as long as the termination condition is not
fulfilled: For each individual in the population, an offspring is created using the
weighted difference of parent solutions. The offspring replaces the parent if it is
fitter. Otherwise, the parent survives and is passed on to the next iteration of
the algorithm. In generation k, we denote the population members by xk

1 , xk
2 ,

. . . , xk
N . The DE algorithm is given as follows [5]:

1) Set k = 0, and randomly generate N points x0
1, x0

2, . . . , x0
N from search

space to form an initial population;

2) For each point xk
i (1 ≤ i ≤ N), execute the DE offspring generation scheme

to generate an offspring x
(
ik + 1);

3) If the given stop criteria is not met, set k = k + 1, goto step 2).

The DE offspring generation approach used is given as follows,

1) Choose one point xd randomly such that f(xd) ≤ f(xk
i), another two points

xb, xc randomly from the current population and a subset S = {j1, . . . , jm}
of the index set {1, . . . , n}, while m < n and all ji mutually different;

2) Generate a trial point u = (u1, u2, . . . , un) as follows:
DE Mutation. Generate a temporary point z as follows,

z = (F + 0.5)xd + (F − 0.5)xi + F (xb − xc); (3)

Where F is a give control parameter;
DE Crossover. for j ∈ S, uj is chosen to be zj ; otherwise uj is chosen a
to be (xk

i)j ;

3) If f(u) ≤ f(xk
i), set xk+1

i = u; otherwise, set xk+1
i = xk

i .

3.3 Procedure of the general learning algorithm.

The general learning procedure for constructing the HWNN network can be
described as follows.

1) Create an initial population randomly (HWNN trees and its corresponding
parameters);

2) Structure optimization is achieved by using ECGP algorithm;

3) If a better structure is found, then go to step 4), otherwise go to step 2);

4) Parameter optimization is achieved by the DE algorithm as described in
subsection 2. In this stage, the architecture of HWNN model is fixed, and it
is the best tree developed during the end of run of the structure search. The
parameters (weights and flexible activation function parameters) encoded
in the best tree formulates a particle.

5) If the maximum number of local search is reached, or no better parameter
vector is found for a significantly long time then go to step 6); otherwise
go to step 4);

6) If satisfactory solution is found, then the algorithm is stopped; otherwise
go to step 2).

+3

+2

x 18

x 0

x 15 x 2

0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sample

R
ea

l
ti

m
e−

se
ri

es
 a

n
d

 m
o

d
el

 o
u

tp
u

t

Training data Testing data

Real time−series

predicted

Fig. 2: The evolved architecture of HWNN model for Mackey-Glass time-
series(left), and the actual time series data, output of the evolved HWNN model
and the prediction error(right).

3.4 Variable Selection using HWNN Paradigms

It is often a difficult task to select important variables for a classification or
regression problem, especially when the feature space is large. Conventional
HWNN usually cannot do this. In the perspective of HWNN framework, the
nature of model construction procedure allows the HWNN to identify important
input features in building an HWNN model that is computationally efficient and
effective. The mechanisms of input selection in the HWNN constructing proce-
dure are as follows. (1) Initially the input variables are selected to formulate
the HWNN model with same probabilities; (2) The variables which have more
contribution to the objective function will be enhanced and have high oppor-
tunity to survive in the next generation by a evolutionary procedure; (3) The
evolutionary operators i.e., crossover and mutation, provide a input selection
method by which the HWNN should select appropriate variables automatically.

4 Simulation studies

4.1 Prediction of Mackey-Glass time-series

The chaotic Mackey-Glass differential delay equation is recognized as a bench-
mark problem that has been used and reported by a number of researchers
for comparing the learning and generalization ability of different models. The
mackey-Glass chaotic time series is generated from the following equation:

dx(t)
dt

=
ax(t− τ)

1 + x10(t− τ)
− bx(t). (4)

Where τ > 17, the equation shows chaotic behavior.
To make the comparison with the earlier works, we predicted x(t + 6) by

using the inputs variables x(t), x(t− 1), . . . , x(t− 18). 1000 sample points were

+3

x
1

+4

x
6

x
9
+2

x
1

x
7

x
1
x
7

x
0

+3

x
2

0 50 100 150 200 250 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Sample

D
e

si
re

d
 a

n
d

 m
o

d
e

l o
u

tp
u

t
s

Training data Testing data

Desired output

Model output

Fig. 3: The evolved structure of HWNN model Jenkins-Box data (left), and the
actual time series data, output of the evolved HWNN model for training and
test samples (right).

Model name and reference Number of inuts RMSE
FNT model (Case 1) [2] 4 0.0069
FNT model (Case 2) [2] 7 0.0027
HWNN model 4 0.0043

Table 1: Comparison of prediction error for Mackey-Glass time-series.

used in our study. The first 500 data pairs of the series were used as training
data, while the remaining 500 were used to validate the model identified.

The used instruction sets to create an optimal HWNN model is S = F
⋃

T =
{+2, +3, +4}

⋃{x0, x1, . . . , x18}. Where xi(i = 0, 1, . . . , 18) denotes x(t), x(t−
1), . . . x(t− 18).

After 12 generations of the evolution, an optimal HWNN model was obtained
with RMSE 0.0045. The RMSE value for validation data set is 0.0043. The
evolved HWNN is shown in Figure 2 (left). The actual time-series data, the
output of HWNN model are shown in Figure 2 (right). From the evolved HWNN
tree, it can be seen that the optimal inputs variables for constructing a HWNN
model are: x(t), x(t−2), x(t−15) and x(t−18). A comparison result of different
methods for forecasting Mackey-Glass data is shown in Table 1.

4.2 Prediction of Jenkins-Box time-series

The gas furnace data (series J) of Box and Jenkins (1970) is well known and
frequently used as a benchmark example for testing identification and prediction
algorithms. The data set consists of 296 pairs of input-output measurements.
The input u(t) is the gas flow into the furnace and the output y(t) is the CO2

concentration in outlet gas. The sampling interval is 9s. For this simulation, 10
inputs variables are used for constructing a HWNN model. The proper time-
lags for constructing a HWNN model are finally determined by an evolutionary

Model name and reference Number of inuts MSE
FNT model (case 1) [2] 2 0.00066
FNT model (case 2) [2] 7 0.00029
HWNN model 6 0.00025

Table 2: Comparison of prediction errors for the gas furnace data.

procedure.
The used instruction sets to create an optimal HWNN model is S = F

⋃
T =

{+2, . . . , +4}
⋃{x0, x1, . . . , x9}. Where xi(i = 0, 1, . . . , 9) denotes y(t− 1), y(t−

2), y(t − 3), y(t − 4), and u(t − 1), u(t − 2), u(t − 3), u(t − 4), u(t − 5) and
u(t− 6), respectively.

After 21 generations of evolution, the optimal HWNN model was obtained
with MSE 0.00021. The MSE value for validation data set is 0.00025. The
evolved HWNN is shown in Figure 3 (left) and the actual time-series, the HWNN
model output and the prediction error is shown in Figure 3 (right). From the
evolved HWNN tree, it can be seen that the optimal inputs variables for con-
structing a HWNN model are: u(t− 3), u(t− 4), u(t− 6), y(t− 1), y(t− 2) and
y(t− 3). It should be noted that the HWNN model with proper selected input
variables has accurate precision and good generalization ability. A comparison
result for different methods for forecasting Jenkins-Box data is shown in Table
2. From the simulation results, it can be seen that the proposed HWNN model
works well for approximating chaotic time series.

5 Conclusions

Based on a novel representation and computational model, a framework for
evolving the HWNN was proposed in this paper. The hierarchical architecture
and inputs selection method of the HWNN were accomplished using ECGP algo-
rithm, and the free parameters embedded in the HWNN model were optimized
using DE algorithm. Preliminary research results reveal that the evolved HWNN
models are effective for function approximation problems. Our future works will
concentrate on improving the convergence speed of the proposed method by par-
allel implementation of the algorithm and by applying the proposed approach
for some real world applications.

References

[1] Y. Chen, B. Yang, and J. Dong, Nonlinear System Modeling via Optimal Design of Neural
Trees, International Journal of Neural Systems, 14:125-137, 2004.

[2] Y. Chen, B. Yang, J. Dong and A. Abraham, Time-series Forecasting using Flexible
Neural Tree Model, Information Science, 174:219-235, 2005.

[3] Y. Chen, B. Yang, J. Dong, Automatic Design of Hierarchical TS-FS Models using Ant
Programming and PSO algorithm, In the Eleventh International Conference on Artificial
Intelligence: Methodology, Systems, Applications, LNCS 3192, pages 285-294, 2004.

[4] R. Storn, and K. Price, Differential evolution - a simple and efficient adaptive scheme
for global optimization over continuous spaces. Technical report, International Computer
Science Institute, Berkley, 1995.

[5] K. Price, Differential Evolution vs. the Functions of the 2nd ICEO. In proceedings of 1997
IEEE International Conference on Evolutionary Computation (ICEC’97), Indianapolis,
USA, pages 153-157, 1997.

[6] K. Sastry and D.E. Goldberg, Probabilistic model building and competent genetic pro-
gramming, In R. L. Riolo and B. Worzel, editors, Genetic Programming Theory and
Practise, pages 205-220, Kluwer, 2003.

