
Tuning Struggle Strategy in Genetic Algorithms
for Scheduling in Computational Grids

Fatos Xhafa∗, Bernat Duran∗, Ajith Abraham†, Keshav Dahal‡

Abstract:
Job Scheduling in Computational Grids is gaining importance due to the need

for efficient large-scale Grid-enabled applications. Among different optimization
techniques addressed for the problem, Genetic Algorithm (GA) is a popular class
of solution methods. As GAs are high level algorithms, specific algorithms can be
designed by choosing the genetic operators as well as the evolutionary strategies
such as Steady State GAs and Struggle GAs. In this paper we focus on Struggle
GAs and their tuning for scheduling of independent jobs in computational grids.
Our results showed that a careful hash implementation for computing the similarity
of solutions was able to alleviate the computational burden of Struggle GA and
perform better than standard similarity measures. This is particularly interesting
for the scheduling problem in Grid systems, which due to changeability over time,
has demanding time restrictions on the computation of the planning of jobs to
resources.

Key words: Genetic Algorithms, Scheduling, Grid Computing, Struggle Strategy,
Similarity Measure, Tuning.

Received: ??
Revised and accepted: ??

1. Introduction

With the emerging paradigm of Grid Computing and the development of Grid in-
frastructures, Grid-based applications are becoming a common approach for solving
many complex problems. A key issue in this kind of applications is scheduling jobs
into Grid resources efficiently, which is known to be computationally hard and
much more difficult than its standard version for sequential or LAN computation
environments.

∗Department of Languages and Informatics Systems, Technical University of Catalonia, Cam-
pus Nord, Ed. Omega, C/Jordi Girona 1-3, 08034 Barcelona, Spain. E-mail: fatos@lsi.upc.edu,
bduran@lsi.upc.edu

†Center of Excellence for Quantifiable Quality of Service, Norwegian University of Science and
Technology, Trondheim, Norway ajith.abraham@ieee.org

‡School of Informatics, University of Bradford, Bradford BD7 1DP, UK
k.p.dahal@Bradford.ac.uk

c©ICS AS CR 2006 1

Neural Network World 2/06, ??

Job Scheduling in Computational Grids is gaining importance due to the need
for efficient large-scale Grid-enabled applications, e.g. in Optimization (Casanova
et al. [8], Goux et al. [13] and Wright [30]), Linderoth et al. [19]), Collabora-
tive/eScience Computing (e.g. Newman et al. [22], Paniagua et al. [24]), Data-
Intensive Computing (e.g. Beynon al. [3]) and many applications arising from con-
crete types of Grids such as Science Grids, Access Grids, Knowledge Grids, etc.
Scheduling is a challenging problem in a Grid environment due its dynamic nature
and the large number of resources to be managed and jobs to be scheduled. Fur-
thermore, resources can have their own local policies (regarding access, cost etc.) to
be taken into account. The problem is multi-objective in its general definition, as
there are several optimization criteria to be matched, such as makespan, flowtime,
and resource utilization.

Several approaches are being addressed in the literature for the problem aiming
to obtain schedulers capable of delivering fast planning of jobs to computational
resources of the grid system. On the one hand there many ad hoc methods such as
immediate and batch mode methods [37, 36]. Such methods distinguish for their
simplicity and efficiency. However, these methods fail to produce high quality plan-
ning of jobs to Grid resources; for instance the immediate method of Opportunistic
Load balancing assigns a job to the machine have the smallest workload, which in a
very heterogenous Grid environment could perform poorly. Moreover, such meth-
ods can handle only one objective at a time (usually the makespan, workload, etc.)
and in Grid systems usually there are more requirements on scheduling. Given the
large scale of the Grid systems as well as periodic submissions of large quantity of
jobs, researchers are seeking for ways to design more efficient Grid schedulers. In
particular, Genetic Algorithms (GA) [16] have proved to be a good alternative for
solving a wide variety of hard combinatorial optimization problems and are there-
fore appropriate for job scheduling in Grids. GAs are a population-based approach
where individuals represent possible solutions, which are successively evaluated,
selected, crossed, mutated and replaced by simulating the Darwinian evolution
found in nature. Genetic Algorithms for Grid scheduling problems have been ad-
dressed by Abraham et al. [1], Braun et al. [5], Zomaya and Teh [41], Martino and
Mililotti [9], Page and Naughton [23], Carretero and Xhafa [7], Gao et al. [12],
Xhafa et al. [35, 34].

The research work on GAs has shown that a key issue in GAs is the convergence
of the algorithm: a fast convergence of the population would stagnate the search to
local optima whereas slower convergence would require a considerably longer time
towards sub-optimal solutions. The convergence of GAs is achieved by means of
selection and replacement strategies and it is, therefore, very important to care-
fully tune these strategies. In particular, the selective pressure directly affects the
tradeoff between the exploration and exploitation of the search space. Indeed, if
the population converges rapidly GA would give more priority to the exploitation
and, vice-versa, when the population is kept diverse, other regions of the search
space would be explored aspiring thus to find better solutions. GAs represent thus
an interesting family of algorithms for Grid scheduling since in many practical
Grid-enabled applications we are interested to compute a reasonably good plan-
ning of jobs in a very short time rather than an optimal planning. In such case,
GAs are useful since we can “burst up” the convergence of the algorithm. Yet, we

2

Xhafa et al.: Tuning Struggle Strategy in GAs for Scheduling in Grids

are interested to avoid a very premature convergence of the algorithm.
In this work we focus on the importance of tuning the replacement mechanism

of GA for scheduling in computational grids. The interest in investigating this
aspect is motivated by the need to design efficient schedulers that will be able to
deliver fast and quality planning of jobs to resources rather optimal solutions in a
dynamic environment. More precisely, we study the tuning of the Struggle strat-
egy (Grueninger [14]; see also [28]). According to this strategy, a new individual
replaces the individual that is most similar to it only in case the new individual
obtains a better fitness value than the one to be replaced. The aim is to preserve
the optimization velocity but delaying its tendency to converge in order to reach
a better convergence point. This strategy is known for its effectiveness but suffers
from a high computational cost. More precisely, given a new individual, finding
a similar individual to it requires comparing against all individuals of the current
generation. Efficient computation of the similarity would therefore alleviate the
computational burden of the Struggle GA.

The rest of the paper is organized as follows. Some related work to the schedul-
ing problem as well as GA-based work that, as in the case of Struggle GA, use
similarity measures to maintain the diversity of the population during the evolu-
tion process are given in Section 2. The problem of scheduling of independent jobs
considered in this work is presented in Section 3. The Struggle strategy together
with similarity measures are introduced in Section 4. The experimental study and
some computational results are given in Section 5. We conclude in this work with
some remarks and indications for future work in Section 6.

2. Related work

In this section we briefly review some related work in computational intelligence
techniques applied to the scheduling problem. Also, other GA-based work that, as
in the case of Struggle GA use similarity measures to maintain the diversity of the
population during the evolution process, are also indicated.

Genetic Algorithms for Grid scheduling problems have been addressed by Abra-
ham et al. [1], Braun et al. [5], Zomaya and Teh [41], Martino and Mililotti [9], Page
and Naughton [23], Carretero and Xhafa [7], Gao et al. [12], Xhafa et al. [35, 34].

Finding a good trade-off between the exploration and exploitation, which is
closely related to the diversity of population, has been explored in the GA lit-
erature [4, 6, 10, 38]. An interesting recent approach to the tradeoff between
exploration and exploitation in evolutionary algorithms is based on the entropy
concept [20].

Multi-objective GAs (such as NSGA, SPEA) use some similarity measures to
maintain the diversity of the population during the evolution process. Thus, Sato
et al. [26], proposed a method for NSGA II (Non-dominated Sorting Genetic Al-
gorithm II) in which similar individuals are eliminated in the process of evolu-
tion by using the distance between individuals in objective space. Ishibuchi and
Narukawa [17] examined the relation between the performance of the NSGA-II al-
gorithm and the similarity of recombined parent solutions for flowshop scheduling
problems. The authors examined the effect of increasing the selection pressure on

3

Neural Network World 2/06, ??

the similarity of recombined parent solutions. Wildman and Parks [29] presented a
comparative study of selective strategies in Multi-objective GAs through different
pairing strategies for combining parents. Ishibuchi and Shibata [18] proposed a new
mating scheme in which similarity-based tournament selection is used for choosing
a pair of parents among the candidate solutions aiming to maintain the diversity
of solutions.

Recently, Memetic Algorithms (MAs) [21] –a relatively new class of population-
based methods– which combine the concepts of evolutionary search and local search
have been proposed for Grid scheduling problem. Xhafa [32] applied unstructured
MAs and Xhafa et al. [33] proposed Cellular MAs (structured MAs) for the inde-
pendent scheduling problem under ETC model.

Other approaches include Reinforced Learning, Neural Networks, Fuzzy Logic,
etc. Some authors have used reinforced learning techniques for scheduling in Grid
systems. Perez et al. [25], proposed to implement a Reinforcement Learning based
scheduling approach for large Grid computing systems. Vengerov [27] presented
a utility-based framework for making repeated scheduling decisions dynamically;
the observed information about unscheduled jobs and system’s resources is used
for this purpose. Yu et al. [39] used Fuzzy Neural Networks to develop a high
performance scheduling algorithm. The algorithms uses Fuzzy Logic techniques
to evaluate the Grid system load information, and adopt the Neural Networks
to automatically tune the membership functions. Hao et al. [15] presented a Grid
resource selection based on Neural Networks aiming at offering QoS on distributed,
heterogeneous resources. To this end, the authors propose to select Grid resources
constrained by QoS criteria. The resource selection problem is solved using a novel
neural networks. Zhou et al. [40] used Fuzzy Logic techniques to design an adaptive
Fuzzy Logic scheduler, which utilizes the Fuzzy Logic control technology to select
the most suitable computing node in the Grid environment.

3. Problem definition

The job scheduling problem in Grids has many characteristics in common with
the traditional scheduling problems. The objective is to efficiently map jobs to
resources; however, in a global, heterogenous and dynamic environment, such as
Grid environment, we are interested to find a practically good planning of jobs very
fast.

In this work we deal with the scheduling independent jobs to resources. We
describe this version next and then give a formal definition of an instance of the
problem. Jobs have the following characteristics: are originated from different
users/applications, have to be completed in unique resource (non-preemptive), are
independent and could also have their requirements over resources. This last char-
acteristic is important if we would like to classify jobs originated from data intensive
or computing intensive applications. On the other hand, resources could dynam-
ically be added/dropped from the Grid, can process one job at a time and have
their computing characteristics.

This version arises in many Grid-based applications, such as in simulations,
massive data processing, which can be divided into independent parts, which are
mapped to different Grid resources.

4

Xhafa et al.: Tuning Struggle Strategy in GAs for Scheduling in Grids

Expected Time to Compute simulation model In order to formalize the
instance definition of the problem, we use the ETC (Expected Time To Compute)
matrix model, see e.g. [5]. This model is used for capturing most important char-
acteristics of job and resources in distributed heterogeneous environments. In a
certain sense, a good planning jobs to resources will have to take into account the
characteristics of jobs and resources. More precisely, the Expected Time to Com-
pute matrix, ETC, has size nb jobs× nb machines and its components ETC[i][j]
are defined as the expected execution time of job i in machine j. ETC matrices are
then classified into consistent, inconsistent and semi-consistent according to the
consistency of computing of resources: (a) consistency means that if a machine mi

executes a job faster than machine mj , then mi executes all the jobs faster than
mj . If this holds for all machines participating in the planning, the ETC matrix is
considered consistent ; (b) inconsistency means that a machine is faster for some
jobs and slower for some others; and, (c) semi-consistency is used to express the
fact that an ETC matrix can have a consistent sub-matrix. In this case the ETC
matrix is considered semi-consistent. Notice that the variability in characteris-
tics of jobs and resources yields to different ETC configurations allowing thus to
simulate different scenarios from real life distributed applications.

Problem definition Under the ETC simulation model, an instance of the prob-
lem consists of:

– A number of independent (user/application) jobs to be scheduled.

– A number of heterogeneous machines candidates to participate in the planning.

– The workload of each job (expressed in millions of instructions).

– The computing capacity of each machine (expressed in mips –millions of instruc-
tions per second).

– Ready time ready[m] –when machine m will have finished the previously as-
signed jobs.

– The Expected Time to Compute matrix, ETC.

Optimization criteria. Several objective criteria can be established for a given
schedule. We consider the minimization of makespan, that is, finishing time of
latest job (S denotes a possible schedule):

min
S

max{Fj : j ∈ Jobs}.
where Fj is the finishing time of job j.

Makespan can be expressed in terms of the completion time of a machine, as
follows:

makespan = max{completion[i] | i ∈ Machines}
where for a machine m:

completion[m] = ready[m] +
∑

{j∈Jobs | schedule[j]=m}
ETC[j][m].

5

Neural Network World 2/06, ??

4. Struggle strategy in GAs and similarity mea-
sures

In Struggle GAs [14, 28] (hereafter, SGA), a new generation of individuals is created
by replacing only a portion of the population with the new individuals. The struggle
genetic algorithm works similarly as the steady-state GAs. However, istead of
replacing the worst individual, in SGA a new individual replaces the individual
that is most similar to it only in case the new individual obtains a better fitness
value than the one to be replaced. This is done in order to adaptively maintain
certain diversity among the population. The aim is to preserve the optimization
velocity but delaying its tendency to converge in order to reach a better convergence
point.

The design of the struggle replacement operator requires the definition of ap-
propriate similarity measures. A similarity measure indicates how similar are two
individuals (solutions of the problem). The definition of a similarity measure could
be done in different ways, for instance by using the structure of the solution (com-
binatorics properties)

It has been shown in GA literature that in the long run Struggle GA and
Steady State GA converge to a single solution. The interest in using Struggle GA,
as opposed to Steady State-like GAs is that in Struggle GAs population evolves by
maintaining different solutions long after a basic or steady-state algorithm would
have converged. This is a desired property for the case of the scheduling problem in
Computational Grids given that we can fine tune the scheduler to “converge” to a
good solution depending on available time (for instance, scheduler’s time activation
interval). Further, Struggle GAs are simple to implement and require no additional
parameters to fine tune but the struggle operator. It should be noted however
that the performance of Struggle GA, despite of good diversity of the population,
depends also on the rest of genetic operators; thus, cross-over operators feeding the
population with good individuals and low mutation rate would yield a very good
performance of the Struggle GA.

4.1 Computational complexity of struggle operator

This strategy has shown to be very effective for several problems [14, 2]; yet, there
is an efficiency issue here: the computational cost of this replacement strategy is
very high. Indeed, in order to find which individuals should leave the population,
any new individual of the intermediate population has to be compared and its
similarity measured against all the individuals of the current population. Obviously,
this leads to a quadratic order computational time, which could be very large, if
large size populations were to be considered. In fact, this is precisely the case of
scheduling independent jobs in computational grids; their large scale and scalability
are critical factors since not only the number of resources and jobs submitted to
the Grid system are expected to be large or very large but also they could increase
over time. It is clear that similarity measures which are not efficient could consume
much of the GA running time in detriment to the proper search time.

6

Xhafa et al.: Tuning Struggle Strategy in GAs for Scheduling in Grids

4.2 Standard similarity measures

In order to compare the similarity between solutions, a measure of similarity or
distance function has to be defined and used. Standard similarity measures include:

• Hamming distance: given two individuals S1 and S2 encoding two schedulings
of N jobs, let g[i] = 1, iff S1[i] = S2[i] and g[0] = 0, otherwise. Similarity is
then calculated as:

Simh(S1, S2) =
∑N

i=1 g[i]
N

.

• Euclidian distance: This similarity is based on the Euclidean distance. Given
two vector solutions S1 and S2, by considering them as two points in N -
dimensional space, the similarity is then computed as the Euclidean distance
between them:

Sime(S1, S2) =

√√√√
N∑

i=1

(S1[i]− S2[i])2.

• Cosine distance: In this case, the similarity is measured using the angle of
the two vector solutions S1 and S2 of the N -dimensional space. Cosine values
close to 1 would mean more similarity.

Simc(S1, S2) =
∑N

i=1 S1[i] · S2[i]√∑N
i=1 S2

1 [i] ·
√∑N

i=1 S2
2 [i]

.

4.3 Hash-based similarity measure

The standard similarity measures given above has linear time computational cost in
number of jobs. Therefore for a population of pop size the standard struggle strate-
gies would take O(intermediate pop size× pop size)×N , where N is the number
of jobs. Reducing the quadratic factor of O(intermediate pop size× pop size) to
a linear time factor would be very desirable in this case since in each replacement
step it would take a considerable time in detriment to the proper search time of
the GA. In order to achieve this, we propose the use of hash techniques so that
given a new individual of the intermediate population we can find in constant time
the individual most similar to it.

In order to design the hash table, we have to first define the key to identify
the individuals of the population. The key information is the basis for computing
the degree of similarity of the struggle genetic operator : the more accurate its
definition the better the performance of the operator. In fact, a poor definition of
the key would simply reduce the struggle operator to a random replacement. In
our definition of the key the context is crucial: the key value should resume as
much as possible the genetic information encoded in an individual; hence, if two
key values are similar then their respective individuals are genetically similar. The
following are three possible definitions:

7

Neural Network World 2/06, ??

a) Fitness-based key : consists in using the fitness value, which is transformed,
using a hash function, into the key value. Certainly this is a very simplistic
approach by simply looking at makespan and flowtime values and clearly no
genetic information is taken into account (we refer to this as ’a’ key).

b) Position-based key : having the permutation vector of task-resource allocation,
in which tasks are sorted according to the resource they are assigned to, the
key is defined as the sum of number of cells a component of the vector would
move to the right as indicated by its value, when the vector is read in a
circular way (we refer to this as ’b’ key). For instance, for the vector of 7
tasks in Fig. 1 below, key = 2 + 4 + 1 + 0 + 2 + 5 + 0 = 14.� 5 � � � � � 1 2 3 4 5 6 7 ��� 	�
 	

Fig. 1 Example position-based key calculation.

Note that this definition uses the genetic characteristics of the solution; how-
ever, the relation task-resource is not explicitly taken into account, i.e., to
which resource is assigned a task.

c) Task-resource allocation key : In this case both information on tasks and re-
sources is used. The key value is now the sum of the absolute values of the
subtraction of each position and its precedent in the vector of task-resource
allocation (reading the vector in a circular way); we refer to this as ’c’ key.

We give in Fig. 2 the graphical representation of the hash table design as well
as the formulae definition of the hash function. Note that the corresponding
position is obtained from a solution from the key value k; kmin and kmax

correspond respectively to the key with smallest and largest value in the
population.

The hash table has the same size as the population in order to obtain constant
time access (in average). If an access fails, a few individuals in the population
are randomly chosen and the most similar to the new one is considered for
the replacement. Hence, the constant access is always ensured even if a failed
access occurs. Therefore, the computational cost of the hash-based struggle
operator is O(pop size + intermediate pop size).

8

Xhafa et al.: Tuning Struggle Strategy in GAs for Scheduling in Grids

 0 if k < kmin

fhash (k) =

−
−

minmax

min

kk

kk
N if kmin ≤ k < kmax

 N-1 if k ≥ kmax

0

1

2

i+1

N

N-1

i

sy

sz

sx

Ø

sq

st

su

sr

ss

Fig. 2 Representation of the hash table and the hash function definition.

5. Experimental study

In this section we present the experimental study of the proposed hash-based Strug-
gle GA. Initially, we generated a set of instances according to ETC matrix model
in order to study the performance of the three key definitions and also to fine tune
the rest of the parameters of Struggle GA. The best resulting configuration was
then used for studying the performance of the SGA on a set of known instances
from Braun et al. [5].

5.1 Performance comparison of struggle hash operators

The performance of the three struggle operators resulting from a key, b key and
c key definitions were measured for makespan value of the schedule. For each of
them, the same configuration of parameters (see Table I) was used; reported values
are averaged over 10 independents runs.

In Table I, MCT (Minimum Completion time) and LJFR-SJFR (Longest Job
to Fastest Resource - Shortest Job to Fastest Resource) are two methods used in
initializing the population; rebalance-both is a mutation operator based on load
balancing of resources. MCT method [11] assigns a job to the machine yielding the
earliest completion time (the ready times of the machines are used). When a job
arrives in the system, all available resources are examined to determine the resource
that yields the smallest completion time for the job. On the other hand, LJFR-
SJFR [1] tries to simultaneously minimize both makespan and flowtime values:
LJFR (Longest Job to Fastest Resource) tries to minimize makespan and SJFR
(Shortest Job to Fastest Resource) tries to minimize flowtime.

We show in Fig 3, the makespan value computed by the SGA algorithm with

9

Neural Network World 2/06, ??

Tab. I Parameter configuration of Struggle GA
nb evolution steps (max 90s)

pop size 10
intermediate pop size 6 (60%)

cross probability 0.9
mutate probability 0.2

start choice MCT and LJFR-SJFR
select choice N tournament
cross choice Fitness Based Crossover

Mutate choice rebalance-both

Hamming distance measure (denoted SGA struggle quadratic) of similarity against
the SGA + a key, b key and c key implementations.

7000000

8000000

9000000

10000000

11000000

12000000

13000000

0 10 20 30 40 50 60 70 80 90

M
ak

es
pa

n

sec

SGA struggle quadratic a key b key c key

a key

b key

SGA struggle
quadratic

c key

Fig. 3 Comparison of makespan values (in arbitrary time units) obtained with four
versions of SGA.

As can be seen from Fig 3, the a key implementation of SGA performs very
poorly -it doesn’t even mimic the behavior of SGA struggle quadratic- recall that
the measure of similarity related to the a key is just the fitness. On the other hand,
b key and c key behave coherently. As expected, the c key outperforms both the
SGA struggle quadratic and the b key implementation. It’s worth observing that
the c key implementation achieves a faster reduction in makespan value –which
is certainly desirable for Grid schedulers running in short periods of time in case
when we just need a feasible (reasonably good) solution rather than an optimal
solution.

In order to better understand the behavior of the three hash-based SGA im-
plementations, we monitored the similarity value computed by each of them (see
Table II). It can be seen that, except the a key case, the rest used the same simi-

10

Xhafa et al.: Tuning Struggle Strategy in GAs for Scheduling in Grids

Tab. II Similarity value of the studied Struggle GAs.
SGA version Similarity value (averaged)

SGA struggle quadratic 0,975
a key SGA 0,736
b key SGA 0,958
c key SGA 0,965

larity value. The best performance of c key implementation could be explained on
the one hand due to its time efficiency (especially when compared with SGA strug-
gle quadratic) and due to the fact that it achieves to introduce a new individual of
better genetic information in the population.

Another benefit of using the hash-based struggle implementation is the scalabil-
ity. Indeed, since the computational time now is scaled down to a linear order, we
could increase the size of population and that of intermediate population without
affecting the search time of the GA. We observed this experimentally (hereafter,
the c key SGA is used); we show this effect by considering a population of 30
individuals and intermediate population of 50% of population size and then by
increasing the population size to 80 individuals. The graphical representation is
shown in Figs. 4 and 5.

7000000

7500000

8000000

8500000

9000000

9500000

10000000

10500000

11000000

11500000

12000000

0 10 20 30 40 50 60 70 80 90

sec

M
a

ke
sp

an

SGA struggle quadrat ic c key

SGA struggle
quadratic

c key

Fig. 4 Makespan reduction of c key SGA vs. SGA struggle quadratic using a
population of 30 individuals and intermediate population size of 50%.

Effectively, we can see from Figs. 4 and 5 that, while for a population of size
30 the two SGA perform almost equally, by enlarging the population size to 80
individuals, the makespan reduction is much faster for the c key SGA than SGA
struggle quadratic.

11

Neural Network World 2/06, ??

7000000

7500000

8000000

8500000

9000000

9500000

10000000

10500000

11000000

11500000

12000000

0 10 20 30 40 50 60 70 80 90

sec

M
ak

es
pa

n

SGA struggle quadratic c key

SGA strugg le quadratic

c key

Fig. 5 Makespan reduction of c key SGA vs. SGA struggle quadratic using a
population of 80 individuals and intermediate population size of 50%.

5.2 Computational results for a static benchmark

We present here some computational results for the c key SGA implementation
for 12 instances from the static benchmark or Braun et al. [5].

Benchmark description The static instances of the benchmark are classified
into 12 different types of ETC matrices, each of them consisting of 100 instances,
according to three metrics: job heterogeneity, machine heterogeneity and consis-
tency. Instances are labelled as u x yyzz.k where:

• u means uniform distribution (used in generating the matrix);

• x means the type of consistency (c–consistent, i–inconsistent and s means
semi-consistent). An ETC matrix is considered consistent when, if a machine
mi executes job t faster than machine mj , then mi executes all the jobs
faster than mj . Inconsistency means that a machine is faster for some jobs
and slower for some others. An ETC matrix is considered semi-consistent if
it contains a consistent sub-matrix;

• yy indicates the heterogeneity of the jobs (hi means high, and lo means low);
and,

• zz indicates the heterogeneity of the resources (hi means high, and lo means
low).

Each instance consists of 512 jobs and 16 machines.
The parameter configuration used is that of Table I. The results are averaged

over 10 independents runs, each of them running for at most 90 sec. on the same
machine of standard configuration.

12

Xhafa et al.: Tuning Struggle Strategy in GAs for Scheduling in Grids

Tab. III Makespan values for Braun et al. instances obtained with SGA (struggle
quadratic) and SGA with c key hash implementation.

Instance SGA SGA (c key Hash)
(struggle quadratic)

u c hihi.0 7722057,537 7752689,084
u c hilo.0 157009,284 156680,578
u c lohi.0 253843 253926,055
u c lolo.0 5271,765 5251,1462
u i hihi.0 3269481,011 3161104,915
u i hilo.0 76413,844 75598,481
u i lohi.0 116981,385 111792,174
u i lolo.0 2634,997 2620,7218
u s hihi.0 4473513,333 4433792,275
u s hilo.0 98782,703 98560,043
u s lohi.0 132971,473 130425,852
u s lolo.0 3565,905 3534,306

The computational results are shown in Table III. In the table, the first col-
umn indicates the instance name. Note that considered instances are represent-
ing different heterogeneous computing environments (four instances for consistent,
semi-consistent and inconsistent, respectively). The second column indicates the
makespan value obtained with the SGA (struggle quadratic) and the third one the
makespan value obtained with SGA (c key hash implementation). Values in bold
face show the best makespan of the two implementations.

As can be seen from Table III, SGA with c key hash implementation outper-
forms SGA struggle quadratic implementation. Moreover, the SGA with c key
hash implementation shows to be robust, it performs well for three types of in-
stances (consistent, inconsistent and semi-consistent computing environments).

5.3 Discussion

From the experimental results presented in the previous subsections, it is clearly
observed that tuning hash-based similarity measures yielded to an efficient struggle
genetic operator. In particular, it is remarkable from Figs. 4 and 5 that the ap-
proach scales very well when the population size is increased. Indeed, when passing
from a population of 30 individual to 80 individuals, the hash-based GA clearly
outperforms the basic GA. This behavior is interesting for Grid scheduling in which
the fluctuation in the instance size has to be taken into account; in particular, the
number of jobs could unexpectedly increase and thus the size of the population
should respectively considered of larger size.

It should also be noticed that although we have presented the study for GAs, the
similarity measures considered in this work are also applicable for other population-
based scheduling algorithms, so it would be interesting to extend this work for other
classes of population-based algorithms.

13

Neural Network World 2/06, ??

6. Conclusion and future work

In this paper, we have presented some results on tuning Struggle GAs for the
problem of scheduling independent jobs in computational grids. This version of
the scheduling requires fast reduction of makespan due to the changeability of the
computational environment. In this work we have proposed hash-based implemen-
tations of the struggle genetic operator for the GAs for the problem. The resulting
struggle operator showed several good properties:

• It is efficient : the quadratic computational time (in terms of the population
time) is reduced to a linear time and hence the overall proper search time of
the GA is increased.

• It is scalable: large scale scheduling problems can be efficiently tackled by
considering larger size populations, due to the linear factor computational
time.

• It is effective: new individuals of better genetic information are introduced
into new generation.

• It is robust : the resulting Struggle GA performed very well on almost all
considered instances representing different heterogeneous computing environ-
ments.

In our future work we plan to consider other similarity measures based on
binary representations of task-resource allocation. Also, we would like to consider
clustering-like techniques, for instance, K-clustering, to increase the performance
of the struggle operator. Finally, we have considered only the makespan objective.
It would be interesting to consider the more general multi-objective case of using
similarity measures in spirit of those presented in this study for NSGGII, SPEA
and other multi-objective approaches for the scheduling problem.

Acknowledgements

We are grateful to the reviewers for their useful comments that helped us to im-
prove the paper. This research is partially supported by Projects ASCE TIN2005-
09198-C02-02, FP6-2004-ISO-FETPI (AEOLUS) and MEC TIN2005-25859-E and
FORMALISM TIN2007-66523.

References

[1] Abraham, A., Buyya, R., and Nath, B. Nature’s heuristics for scheduling jobs on Compu-
tational Grids. In The 8th IEEE International Conference on Advanced Computing and
Communications, India, 2000.

[2] Bartschi Wall, M. A Genetic Algorithm for Resource-Constrained Scheduling PhD Thesis,
Massachusetts Institute of Technology June 1996

[3] Beynon, M.D., Sussman, A., Catalyurek, U., Kure, T. and Saltz, J. Optimization for data
intensive grid applications. In Third Annual International Workshop on Active Middleware
Services, 97–106, California, 2001.

14

Xhafa et al.: Tuning Struggle Strategy in GAs for Scheduling in Grids

[4] Brameier, M. and Banzhaf, W. Explicit control of diversity and effective variation distance
in linear genetic programming, In Genetic Programming, 5th European Conference, EuroGP
2002, Kinsale, Ireland, April 3-5, 2002, vol. 2278 of Lecture Notes in Computer Science,
37–49. Springer, 2002.

[5] Braun, T., Siegel, H., Beck, N., Boloni, L., Maheswaran, M., Reuther, A., Robertson, J.,
Theys, M., and Yao, B. A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems. Journal of Parallel
and Distributed Computing, 61(6):810–837, 2001.

[6] Burke, E.K., Gustafson, S.M., Kendall, G. and Krasnogor, N. Advanced population diversity
measures in genetic programming, In Parallel Problem Solving from Nature - PPSN VII, 7th
International Conference, Granada, Spain, vol. 2439 of Lecture Notes in Computer Science,
341–350. Springer, 2002.

[7] Carretero, J. and Xhafa, F. Using Genetic Algorithms for Scheduling Jobs in Large Scale Grid
Applications. Journal of Technological and Economic Development –A Research Journal of
Vilnius Gediminas Technical University, ISSN 1392-8619, Vol. 12, No. 1, p. 11-17, 2006.

[8] Casanova, H. and Dongarra, J. Netsolve: Network enabled solvers. IEEE Computational
Science and Engineering, 5(3):57–67, 1998.

[9] Di Martino, V. and Mililotti, M. Sub optimal scheduling in a grid using genetic algorithms.
Parallel Computing, 30:553–565, 2004.

[10] Ekárt, A. and Németh, S.Z. Maintaining the diversity of genetic programs, In Genetic Pro-
gramming, 5th European Conference, EuroGP 2002, Kinsale, Ireland, vol. 2278 of Lecture
Notes in Computer Science, 162–171. Springer, 2002.

[11] Freund, R., Gherrity, M., Ambrosius, S., Campbell, M., Halderman, M., Hensgen, D., Keith,
E., Kidd, T., Kussow, M., Lima, J., Mirabile, F., Moore, L., Rust, B. and Siegel, H. Schedul-
ing resources in multi-user, heterogeneous, computing environments with SmartNet. In Sev-
enth Heterogeneous Computing Workshop, 184–199, 1998.

[12] Gao, Y., Rong, H., and Huang, J. Z. Adaptive Grid job scheduling with genetic algorithms.
Future Gener. Comput. Syst. 21, 1 (Jan. 2005), 151-161, 2005.

[13] Goux, J.P., Kulkarni, S., Linderoth, J. and Yoder, M. An enabling framework for master-
worker applications on the computational grid. In 9th IEEE Int. Symposium on High Per-
formance Distributed Computing (HPDC’00), 2000.

[14] Grueninger, T.: Multimodal optimization using genetic algorithms. Technical report. De-
partment of Mechanical Engineering, MIT, Cambridge, MA, 1997.

[15] Hao, X., Dai, Y., Zhang, B., Chen, T. and Lei Yang: QoS-Driven Grid Resource Selection
Based on Novel Neural Networks. GPC 2006: 456-465, 2006.

[16] Holland, J.H. Adaptation in Natural and Artificial Systems, University of Michigan Press,
Ann Arbor, MI, 1975.

[17] Ishibuchi, H. and Narukawa, K. Recombination of Similar Parents in EMO Algorithms, In
Evolutionary Multi-Criterion Optimization, 265-279, 2005.

[18] Ishibuchi, H. and Shibata, Y. A Similarity-Based Mating Scheme for Evolutionary Multi-
objective Optimization. Lecture Notes in Computer Science, Springer, Volume 2723/2003,
Genetic and Evolutionary Computation GECCO 2003.

[19] Linderoth, L. and Wright, S. Decomposition algorithms for stochastic programming on a
Computational Grid. Computational Optimization and Applications, 24:207–250, 2003.

[20] Liu, Sh., Mernik, M. and Bryant, B.R. Entropy-driven exploration and exploitation in evo-

lutionary algorithms, In Bogdan Filipic̆ and Jurij S̆ilc, editors, Proceedings of the 2nd Inter-
national Conference on Bioinspired Optimization Methods and their Applications (BIOMA
2006), 15–24, Ljubljana, Slovenia, October 2006. Joz̆ef Stefan Institute.

[21] Moscato, P. On evolution, search, optimization, genetic algorithms and martial arts: Towards
memetic algorithms. Technical report N. 826, California Institute of Technology, USA, 1989.

[22] Newman, H.B., Ellisman, M.H. and Orcutt, J.A. Data-intensive e-Science frontier research.
Communications of ACM, 46(11):68–77, 2003.

15

Neural Network World 2/06, ??

[23] Page, J. and Naughton, J. Framework for task scheduling in heterogeneous distributed
computing using genetic algorithms. AI Review, 24:415-429, 2005.

[24] Paniagua, C., Xhafa, F., Caballé, S. and Daradoumis, T. A parallel grid-based implementa-
tion for real time processing of event log data in collaborative applications. In Parallel and
Distributed Processing Techniques (PDPT2005), 1177–1183, Las Vegas, USA, 2005.

[25] Perez, J., Kégl, B. and Germain-Renaud, C. Reinforcement learning for utility-based Grid
scheduling. At NIPS07 (Twenty-First Annual Conference on Neural Information Processing
Systems) Workshops, in Vancouver, Canada, 2007.

[26] Sato, M., Aguirre, H.E. and Tanaka, K. Effects of -Similar Elimination and Controlled Elitism
in the NSGA-II Multiobjective Evolutionary Algorithm. In IEEE Congress on Evolutionary
Computation, 1164-1171, Vancouver, BC, Canada, 2006

[27] Vengerov, D. Adaptive Utility-Based Scheduling in Resource-Constrained Systems. In AI
2005: Advances in Artificial Intelligence, pp. 477-488, Springer Verlag, 2005

[28] Nicola Senin, Roberto Groppetti and David R. Wallace. Concurrent assembly planning with
genetic algorithms. Robotics and Computer-Integrated Manufacturing, Vol. 16, Issue 1, pp.
65-72, 2000

[29] Wildman, A. and Parks, G. A Comparative Study of Selective Breeding Strategies in a
Multiobjective Genetic Algorithm. In C.M. Fonseca et al. (Eds.): EMO 2003, LNCS 2632,
pp. 418432, 2003.

[30] Wright, S. (2001). Solving optimization problems on Computational Grids. Optima, Vol. 65,
2001.

[31] Xhafa, F. A Hyper-heuristic for Adaptive Scheduling in Computational Grids, International
Journal on Neural and Mass-Parallel Computing and Information Systems, 17(6), 639-656,
2007

[32] Xhafa, F. A Hybrid Evolutionary Heuristic for Job Scheduling in Computational Grids.
Springer Verlag Series: Studies in Computational Intelligence , Vol. 75 2007, Chapter 10,
ISBN: 978-3-540-73296-9. September 2007.

[33] Xhafa, F., Alba, E., Dorronsoro, B. and Duran, B. Efficient Batch Job Scheduling in Grids
using Cellular Memetic Algorithms, Accepted, Journal of Mathematical Modelling and Al-
gorithms, Published Online DOI: http://dx.doi.org/10.1007/s10852-008-9076-y

[34] Xhafa, F., Barolli, L. and Durresi, A. An Experimental Study On Genetic Algorithms for
Resource Allocation On Grid Systems, Journal of Interconnection Networks, Volume: 8,
Issue: 4 (December 2007), 427 - 443, World Sci. Pub.

[35] Xhafa, F. Carretero, J. and Abraham, A. Genetic Algorithm Based Schedulers for Grid Com-
puting Systems. International Journal of Innovative Computing, Information and Control,
Vol. 3, No.5, pp. 1-19, 2007.

[36] F. Xhafa, L. Barolli and A. Durresi. Batch Mode Schedulers for Grid Systems. International
Journal of Web and Grid Services, Vol. 3, No. 1, 19-37, 2007.

[37] F. Xhafa, J. Carretero, L. Barolli and A. Durresi. Immediate Mode Scheduling in Grid
Systems. International Journal of Web and Grid Services, Vol.3 No.2, 219-236, 2007.

[38] Yan, W. and Clack, Ch. D. Behavioural GP diversity for dynamic environments: an applica-
tion in hedge fund investment, In GECCO ’06: Proceedings of the 8th annual conference on
Genetic and evolutionary computation, 1817–1824, New York, NY, USA, 2006. ACM Press.

[39] Yu, K.M., Luo, Zh.J., Chou, Ch.H., Chen, Ch.K., and Zhou, J. A Fuzzy Neural Network
Based Scheduling Algorithm for Job Assignment on Computational Grids. NBiS 2007: 533-
542, Lecture Notes in Computer Science, Springer Verlag, 2007

[40] Zhou, J., Kun-Ming Yu, K-M. Chou, Ch-H., Yang, L-A., and Luo, Zh-J.: A Dynamic Re-
source Broker and Fuzzy Logic Based Scheduling Algorithm in Grid Environment. ICANNGA
(1) 2007: 604-613, 2007.

[41] Zomaya, A.Y. and Teh, Y.H. Observations on using genetic algorithms for dynamic load-
balancing, IEEE Transactions On Parallel and Distributed Systems, 12(9):899–911, 2001.

16

