
A Fingerprinting System Calls Approach for Intrusion Detection in a Cloud
Environment

Sanchika Gupta

Department of E&CE
Indian Institute of Technology, Roorkee

Uttarakhand, India
dr.sanchikagupta@gmail.com

Padam Kumar

Department of E&CE
Indian Institute of Technology, Roorkee

Uttarakhand, India
padamfec@iitr.ernet.in

Anjali Sardana
Department of E&CE

Indian Institute of Technology, Roorkee
Uttarakhand, India

Ajith Abraham
IT For Innovations - Center of Excellence

VSB-Technical University of Ostrava, Czech Republic
*Machine Intelligence Reserch Labs (MIR Labs), WA, USA

ajith.abraham@ieee.org

Abstract—	
 Cloud Computing envisioned as the next generation
architecture for IT enterprises, has proliferated itself due to the
advantages it provides. Cloud Computing provides solutions for
carrying out efficient, scalable and low cost computing. Due to
the distributed nature of cloud based system, it is vulnerable to a
large category of attacks out of which VM based attacks are most
common. To counter these attacks we need Intrusion Detection
System (IDS), which is used to monitor network traffic and policy
violations from unauthorized users. Anomaly Detection is a
technique of Intrusion Detection, which is used to detect
intrusions by monitoring system activity and finding out patterns
that do not comply with the normal behavior. In this paper an
approach for anomaly detection in cloud environment is
presented, which is based upon analysis of system call sequences
generated by the virtual machines to the hypervisor. Our
proposed implementation prevents malicious VM users to modify
well known frequently executed programs.

Keywords: cloud, IDS, anomaly detection, system call, xen, finger
print.

I. INTRODUCTION
Cloud Computing has evolved as a major platform that

provides a variety of services on a pay per usage model. It
provides services at software, platform and application layer.
The US National Institute of Standards and Technology (NIST)
have captured five essential cloud characteristics: on-demand
self-service, ubiquitous network access, resource pooling, rapid
elasticity and measured service [1]. Because of the various
services it provides and the ease of access to services in a
cloud, it is vulnerable to a large number of network and host
based attacks [2]. However the concept of Cloud Computing is
not new but due to its globalization and enormous usage there
is an immediate requirement to look at its security aspects.

Cloud is basically of two types: Compute Cloud and Data
Cloud. The Cloud which provides computing power as a
service comes under the category of compute cloud while
others providing storage services are known as data cloud.
Both of these cloud service model have different requirements
with respect to their security. For example, securing a Compute
Cloud majorly include detection of intrusive system call

sequences, malwares, trojans that are targeting to disrupt the
computational efficiency provided by the cloud vendor, while
securing a data cloud will mainly focus on network based
attacks that may try to get access to unauthorized information
stored in it.

It is found that a large category of attacks are launched
through malicious VM’s allocated to the cloud users. Major
attacks identified till date includes DDoS attacks from virtual
machines (VM’s), VM Hoping, VM Rootkit, VM escape etc.
Attackers target the Cloud infrastructure for consuming
bandwidth, storage capacity and processing power.

In case of network based attacks such as TCP SYN
Flooding, malicious VM’s generate and send large number of
TCP SYN packets to the privileged domain or other
neighboring VM’s to consume bandwidth, storage and
processing power of the end systems and hence will decrease
the quality of cloud services. Many other attacks launched from
malicious VM’s that utilizes network vulnerabilities include
buffer overflow attacks, network sniffing etc.

There are other attacks that utilize vulnerabilities in the
virtualization environment used for allocation of cloud
infrastructure. Such vulnerabilities present in virtualization
environment are because of improper configuration of services
provided to the cloud users. There has been a lot of research
going on to provide security to the virtualization software such
as hypervisors [3] so that commonly known VM based attacks
that utilizes hypervisors miss-configuration and vulnerabilities
can be minimized [4].

It has been noticed that cloud vendors are more interested
in increasing the compute power of the clouds with
minimization of resources so that the available services can be
delivered at low cost and new services can be added to it.
Hence any defensive mechanism to tackle well known attacks
on cloud can only be taken into practice if it adds low cost to
the cloud infrastructure for its deployment, maintenance and
operation. Existing solutions such as IDS, IPS which are
proposed for securing cloud infrastructure focus more on
providing robust security to the cloud users and vendors but

they lack in providing a solution that can be deployed
efficiently to the cloud infrastructure [5].

In this paper an approach for anomaly detection in cloud
environment is presented which is based upon statistical
analysis of system call sequences generated by the virtual
machines to the hypervisor. Existing schemes for detection of
malicious system calls from virtual machines on cloud
infrastructure does not focus on statistical analysis of system
call sequences rather focus on integrity of individual system
calls. It will help in detecting a malicious system call but not
malicious system call sequences which decrease the probability
of detecting an intrusive call sequence if present in frequently
used system call sequences.

II. RELATED WORK
The research presented in this paper is related to anomaly

detection for severity analysis in virtual machines. It is based
on the statistical analysis of malicious system call sequences
which are generated by the virtual machines. So we have
drawn the existing literature in this area so that a comparative
analysis could be made with our scheme.

Forest et al. [6] presented a method for anomaly intrusion
detection at the process level. Discrimination is made between
normal and abnormal characteristics. Normal is defined as
short sequences of system calls that are generated by running
privileged processes. Using this method they were able to
detect various attacks like buffer overflow, symbolic link attack
etc.

Lee et al. [7] extended the work of Forest et al. and
identified the normal and abnormal patterns in Unix processes.
Machine Learning based approach was used to identify misuses
and intrusions in UNIX system. They applied RIPPER, a rule
learning program to the audit data of UNIX sendmail program.

Warrender et al. [8] proposed a method for detecting
intrusions using intrusive system calls. In this the sequence of
system calls was identified in the kernel of an operating
system. For experimentation they compared 4 methods for
observing normal behaviors and detecting intrusions based on
system calls in privileged processes. This scheme however is
not specific to cloud computing platform.

Ghosh et al. [9] used ANN (artificial neural network)
techniques to learn normal sequences of system calls for
specific UNIX system programs. More than 150 program
profiles were established. For each program, a neural network
was trained and used to identify anomalous behaviour. They
used DARPA dataset for establishing profiles.

Liao et al. [10] proposed text categorization techniques for
intrusion detection. Here instead of the storing short sequences
of system calls, frequencies of system calls are used to identify
the program behavior using kNN classifier. The kNN classifier
is used to classify program behavior as normal or intrusive.

Ye et al. [11] proposed an intrusion detection approach for
system call sequences and rule extraction. In this paper, an
approach for anomaly intrusion detection is presented and
applied to monitor the abnormal behavior of processes. The
approach is based on rough set theory and capable of extracting

a set of rules with the minimum size to form a normal behavior
model from the record of system call sequences generated
during the normal execution of a process. It may detect the
abnormal operating status of a process. The normal behavior
model in terms of the system call sequences is defined. And the
detection algorithm is given for the application of rough set
theory in intrusion detection. The illustrative example shows
that it is feasible and effective.

Bharadwaja et al. [12] proposed Collabra which is
integrated with every virtual machine monitor and acts as a
filtering layer to detect attacks and prevent illicit access to the
VMM and the host. It also performs filtering of malicious
hyper calls at the guest OS level before routing the call to the
VMM. This scheme however does not looks for intrusive
system call sequences which can help in preventing an attack
before it is targeted if the system call sequence falls outside any
valid system call sequences.

Jin et al. proposed VMFence [13] which is used to monitor
network flow and file integrity in real time. But this
architecture is more computationally complex as it checks for
attack patterns from data coming via all VM’s connected to the
privileged domain. Also it does not take into account malicious
system call sequences from VM’s targeted on the cloud
infrastructure.

Arshad et al [14] proposed an automatic intrusion diagnosis
approach for clouds. In this paper they have analysed a set of
three security attributes i.e. availability, confidentiality and
integrity. They have categorized all the attacks on the basis of
these three security attributes. Then they have identified what
kind of attack is being generated by the system calls and
mapped those system calls to any one of these attributes. Both
supervised and unsupervised methods have been used for
preparing the training datasets. However the implementation on
virtual machines or real cloud environment is not
demonstrated.

Arshad et al. [15] proposed a novel intrusion severity
approach for cloud. They are focused on presenting a machine
learning based approach which make use of virtual machine
specific parameters such as security requirement, SLA state
and frequency of attack. They have demonstrated that the
proposed approach is effective to address the severity analysis
in Cloud. But it does not detect attacks from malicious system
call sequences.

III. PROPOSED WORK
According to our studies, we have identified that there is an

immediate need of security against malicious insiders and users
that can attack cloud environment by manipulating execution
of frequently used programs for performing malicious
operations over cloud.

 We have proposed a new approach to intrusion detection
[19-27], which detects malicious system call sequences of
well-known programs. The term “well known programs” refers
to those programs that are frequent in their execution and
whose signature of execution remains fairly constant with
respect to time. Our proposed implementation prevents
malicious VM users or cloud insiders to modify well known

frequently executed programs. These programs can be those
which are allocated to a particular VM User as software or
programs that are related with the functioning of VM’s such as
networking, configuration or operation of the cloud system.

The word program is abstracted here and it can imply any
executable instance which runs on VM for providing services.
One of the known examples can be of a well-known .exe file
provided to VM users that is automatically executed from
remote privileged domain when a VM particular to a user starts
and connected with the network. As it is stored on the VM a
malicious user is always free to remove it and create a new
copy of it with same code but malicious code inserted into it.
Such malicious code can result into malicious system calls to
get executed from the VM that may target to get extra
privileges of other virtual machines. An intelligent user may
use malicious system call fired from execution of the program
to disable some of security controls and policies over its own
VM.

Our proposed scheme overcomes the above scenario by
keeping an eye over the execution of well-known programs.
We in our scheme take and store the finger print of such well
known programs in terms of system call sequence arrays and
use the same finger print to verify their correctness every time
they are fired from a VM. We are different from other schemes
that store valid system call sequences for execution of a single
or defined set of programs. Our scheme creates individual
arrays for each system call that contain immediate next valid
system calls, and this array is created from analysis of a set of
well-known programs.

For creating such arrays, we have taken system call logs of
normal program execution as a base for detection of anomaly
and our storage data structure for capturing the finger print of
execution of program is in terms of an array. Individual array is
created for each system call that comes in the normal execution
of the program. The array consists of the System call number
of the system call for which it is created with next indices
containing the consecutive next system calls that are executed
just immediately after it any time during the execution of the
well-known program. So for example if we have N different
system calls we have N different arrays for each system call
each containing next system calls that are fired just after it
during execution. For each well-known program whose
execution is vulnerable, and manipulations are probable over it,
we analyze its execution of system calls and create such
fingerprint for it. This finger print for the program is stored and
used in future for detection of malicious system calls detection.
Finger print is created and stored in both normal and abnormal
but authentic conditions of program executions. Hence finger
print is assured to contain all the possibilities that can happen
under normal program execution conditions. Our detection is
signature based as if the finger print of normal program
execution does not matches with the signature obtained from
system call logs gathered from everyday execution of the
program, an abnormal session is detected.

During detection phase whenever the program is executed a
system call log is created with the use of system call tracer in
privileged domain. From the log same finger print or array’s
for each system call is created in the same fashion. Then a one
to one matching of those finger prints is done. If any
mismatches are found an abnormal session gets recorded in the

privileged domain and notified to the cloud administrator. The
notification can be in terms of messages that contain the system
log name in which an anomaly is detected. This will allow
cloud admin to trace back the anomalous execution and do the
necessary actions over the VM from which such sessions are
recorded.

The Finger print creation strategy from system call logs is
specified in Figure2. In this Figure system calls are extracted
from system call logs. System call logs are obtained with the
use of utility programs such as Strace and Ntrace. They are
then mapped to their respective system call numbers as present
in the mapping file.

The mapping file relates each system call with its unique
system call number that is uniquely identifiable and easy to use
and remember. The final Sys call log with System call
Numbers is used for generating the individual system call array
for each system call for a set of well-known program
executions. The collection of all such arrays will result in a
finger print of normal program executions. This finger print is
not created in just one program execution, but it is analyzed
and verified in various execution of the a single and set of
program so that it is assured that finger point that will then be
used for verification does not varies.

This Finger print is stored as a base for anomalous session
detection. Now every time this program is executed from VM a
system call log is created for the program execution and again
the same method is applied for creation of system call array or
fingerprint of program execution. This Finger print is matched
with the base fingerprint stored for that program in privileged
domain if it matches this is not a problem and if it shows
mismatches proper notification is propagated to Cloud admin
about the anomalous executions so that necessary actions can
be taken.

Figure1 depicts how system calls fired from
application or program executions are captured from Strace and
collected as system logs. These system logs are then looked for
individual system call names so that they can be mapped to
their corresponding unique system call number according to the
mapping provided in the Mapping file. Now for each unique
system call as obtained from system call logs an array is
created which stores the system call numbers of the immediate
system calls that are called after it in the program execution.
This array is not only for a single program execution.

This finger print is not only for a single program execution
but this will store signature of valid system call sequences for a
set of well-known programs. Here by well-known program we
mean those programs which are vulnerable to malicious code
insertions that can change the order of system call execution of
that program. Hence the finger print created will inform for any
subversion in the normal program executions. Figure2 explains
how the system call finger print of a program execution is
compared with finger print of set of well-known programs
stored in finger print database for ensuring its validity. In
example as all the arrays values matches with the values
present in finger print database, it signifies that the execution
sequence of system call is valid and is not subverted.

IV. IMPLEMENTATION DETAILS
For showing a demo implementation we have installed a
system call logger for windows called Ntrace [16]. Similarly a
system call logger for Linux environment called Strace [17]
has been also used in our prototype implementation and
analysis. These program logs the system calls fired during a
program execution. Virtual machines are assigned to users
which fire commands to be executed by the hypervisor and
their system call logs are stored in the privileged domain Dom-
0 in xen [18]. We collect such system call logs for each
program or executable by running them and then looking for
the system calls which are executed by them.

Figure1. Snapshot of System call log from a Program

Execution

The system call pattern of a particular well known program
remains same always and varies in some defined way in valid
abnormal conditions. By system call pattern we mean the
sequence of system calls with their number and calling order,
fired by the program to the underlying operating system. From
the system call logs we gather all the individual unique system
calls which are then mapped to their system call numbers. If for
that system call the array already exists in the signature

database we do not create a new array for it however if that
system call is a new system call in the database we will create a
new array for it. Whether the array is present or absent the
immediate next system call following that system call are
appended to that array in the next available index location. The
finger print database remains same and also the array of the
individual unique system call numbers. When a new program is
executed for analysis the system calls are extracted and the
entries of immediate next system calls are made in the same
database in their corresponding array location. If the entry
already exists it is not entered again however if it is not there
the new entry is made in the next available index for a
particular system call.

In this way the finger print database is created for a
set of well-known programs executions. But the analysis of
each program execution is done several times in different
conditions to ensure that the execution signature does not vary.
Figure 1 gives a snapshot of system calls log of a particular
program execution from which unique system calls are
extracted for finger print database creation and updation.

The system call logs for a particular application are
analyzed and individual system calls are extracted. These are
then mapped to a sys call number (Sys No) via the mapping file
which is stored in Dom-0. During detection the same procedure
is followed for creation of individual array for individual
program execution from their system call logs collected. The
finger print is created in the same manner. For each system call
an array is created that contains the immediate next system
calls executed after it. The array is then looked into finger print
database for matching of the system calls if such a match
occurs then it represents that the signature of execution is valid
and there is no subversion in program execution.

The fingerprint as explained in Figure 2 is then created for
the program execution. But the finger print is created after
analysis for a particular program in its normal and abnormal
executions. We have analyzed various program executions for
various executable to verify that system calls for normal
execution of a program does not frequently varies in practice.
We have developed the Fingerprint generation technique as
proposed in the architecture however its efficient deployment
over cloud and results evaluation is currently in progress.

V. CONCLUSIONS
In this paper, an approach for detection of malicious

program executions in Cloud environment is proposed, which
is based upon analysis of system call sequences generated by
the virtual machines programs to the hypervisor. Our proposed
implementation prevents malicious VM users to modify well
known frequently executed programs. Hence it detects any
malicious code insertions in frequent and well known program
executions. This approach of modelling valid system call
sequences helps in detection of system call sequences which
are anomalous and falls outside the set of valid system call
sequences hence result in anomaly detection. This approach
can help in the detection of subverted operations that may be
launched by an attacker from a VM to exploit the vulnerability
of a particular operating system or computing platform.

Figure 2. Finger print creation from System call logs

Figure3. Detecting valid program executions from Finger print

We have verified the initial design of the proposed solution
and identified that it is low complex as only a single finger
print database will be required for verification and validation
of execution of multiple programs. We have deployed a
prototype implementation of the same however the detailed
implementation in real time environment with scalability and
adaptability issues is in study. The future work will be hence
focused on validating the detailed implementation of it on a
commercial cloud environment.

REFERENCES

1. E. Brown, “NIST Issues Cloud Computing Guidelines for
Managing Security and Privacy,” National Institute of
Standards and Technology Special Publication 800-144, 2012.
2. P.M.T. Grance, “Effectively and Securely Using the Cloud
Computing Paradigm (v0.25),” 2009;
http://csrc.nist.gov/organizations/fissea/2009-
conference/presentations/fissea09-pmell-day3_cloud-
computing.pdf.
3. S. Gupta, S. Horrow, and A. Sardana, “IDS Based Defense
for Cloud Based Mobile Infrastructure as a Service,” Services
(SERVICES), 2012 IEEE Eighth World Congress on, IEEE,
pp. 199-202.
4. B. Grobauer, T. Walloschek, and E. Stocker,
“Understanding Cloud Computing Vulnerabilities,” Security
& Privacy, IEEE, vol. 9, no. 2, pp. 50-57.
5. S. Gupta, S. Horrow, and A. Sardana, “A Hybrid
Intrusion Detection Architecture for Defense against DDoS
Attacks in Cloud Environment
Contemporary Computing,” Contemporary Computing,
Communications in Computer and Information Science 306,
Springer Berlin Heidelberg, 2012, pp. 498-499.
6. A.H. Steven, F. Stephanie, and S. Anil, “Intrusion
detection using sequences of system calls,” J. Comput. Secur.,
vol. 6, no. 3, 1998, pp. 151-180.
7. Wenke Lee, Philip K. Chan, “Learning Patterns from Unix
Process Execution Traces for Intrusion Detection,”
Proceedings of AAAI97 Workshop on AI Methods in Fraud
and Risk Management, pp. 50-56.
8. S.F. Christina Warrender , Barak Pearlmutter, “Detecting
Intrusions Using System Calls: Alternative Data Models,” In
IEEE Symposium on Security and Privacy, IEEE.
9. A.S. Anup K. Ghosh, Michael Schatz, “Learning Program
Behavior Profiles for Intrusion Detection,” Proceedings of 1st
USENIX Workshop on Intrusion Detection and Network
Monitoring.
10. V.R.V. Yihua Liao, “Using Text Categorization
Techniques for Intrusion Detection,” Proceedings of the 11th
USENIX Security Symposium.
11. Q. Ye, X. Wu, and B. Yan, “An Intrusion Detection
Approach Based on System Call Sequences and Rules
Extraction,” e-Business and Information System Security
(EBISS), 2010 2nd International Conference on, pp. 1-4.
12. S. Bharadwaja, S. Weiqing, M. Niamat, and S. Fangyang,
“Collabra: A Xen Hypervisor Based Collaborative Intrusion
Detection System,” Information Technology: New

Generations (ITNG), 2011 Eighth International Conference
on, pp. 695-700.
13. H. Jin, G. Xiang, D. Zou, S. Wu, F. Zhao, M. Li, and W.
Zheng, “A VMM-based intrusion prevention system in cloud
computing environment,” The Journal of Supercomputing,
2011, pp. 1-19.
14. J. Arshad, P. Townend, and J. Xu, “An automatic intrusion
diagnosis approach for clouds,” International Journal of
Automation and Computing, vol. 8, no. 3, 2011, pp. 286-296.
15. Junaid Arshad, Jie Xu, “A novel intrusion severity analysis
approach for Clouds,” Future Generation Computer Systems,
The International Journal of Grid Computing and eScience,
vol. 28, no. 7, 2011, pp. 965-1154.
16. Roger, “NtTrace - Native API tracing for Windows,”
2012; http://www.howzatt.demon.co.uk/NtTrace/.
17. “Strace,” 2008; https://wiki.ubuntu.com/Strace.
18. “XEN,” 2012; http://www.xen.org/.
19. Alvaro Herrero, Emilio Corchado, Maria Pellicer and Ajith
Abraham, MOVIH-IDS: A Mobile-Visualization Hybrid
Intrusion Detection System, Neurocomputing Journal, Elsevier
Science, Netherlands, 72(15), pp. 2775-2784, 2009.
20. Ajith Abraham, Crina Grosan and Carlos Martin-Vide,
Evolutionary Design of Intrusion Detection Programs,
International Journal of Network Security, Vol.4, No.3, pp.
328-339, 2007.
21. Yuehui Chen, Ajith Abraham and Bo Yang, Hybrid
Flexible Neural Tree Based Intrusion Detection Systems,
International Journal of Intelligent Systems, John Wiley and
Sons, USA, Volume 22, pp. 1-16, 2007.
22. Sandhya Peddabachigari, Ajith Abraham, Crina Grosan
and Johnson Thomas, Modeling Intrusion Detection System
Using Hybrid Intelligent Systems, Journal of Network and
Computer Applications, Elsevier Science, Volume 30, Issue 1,
pp. 114-132, 2007.
23. Ajith Abraham, R. Jain, J. Thomas and S.Y. Han, D-
SCIDS: Distributed Soft Computing Intrusion Detection
Systems, Journal of Network and Computer Applications,
Elsevier Science, Volume 30, Issue 1, pp. 81-98, 2007.
24. S. Chebrolu, Ajith Abraham and Johnson Thomas, Feature
Deduction and Ensemble Design of Intrusion Detection
Systems, Computers and Security, Elsevier Science, Volume
24/4, pp. 295-307, 2005.
25. S. Mukkamala, A. Sung and Ajith Abraham, Intrusion
Detection Using Ensemble of Soft Computing and Hard
Computing Paradigms, Journal of Network and Computer
Applications, Elsevier Science, 28(2), pp. 167-182, 2005.
26. Ajith Abraham, C. Grosan and Y. Chen, Cyber Security
and the Evolution in Intrusion Detection Systems, Journal of
Engineering and Technology, ISSN 0973-2632, I-Manager
Publications, Vol. 1, No. 1, pp. 74-81, 2005.
27. S. Mukkamala, A. Sung, Ajith Abraham and Vitorino
Ramos, Intrusion Detection Systems Using Adaptive
Regression Splines, Enterprise Information Systems VI ,
Seruca, I.; Cordeiro, J.; Hammoudi, S.; Filipe, J. (Eds.)
Springer-Verlag, ISBN: 1-4020-3674-4, pp. 211-218, 2006.

