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Abstract—	
   Cloud Computing envisioned as the next generation 
architecture for IT enterprises, has proliferated itself due to the 
advantages it provides. Cloud Computing provides solutions for 
carrying out efficient, scalable and low cost computing. Due to 
the distributed nature of cloud based system, it is vulnerable to a 
large category of attacks out of which VM based attacks are most 
common. To counter these attacks we need Intrusion Detection 
System (IDS), which is used to monitor network traffic and policy 
violations from unauthorized users. Anomaly Detection is a 
technique of Intrusion Detection, which is used to detect 
intrusions by monitoring system activity and finding out patterns 
that do not comply with the normal behavior. In this paper an 
approach for anomaly detection in cloud environment is 
presented, which is based upon analysis of system call sequences 
generated by the virtual machines to the hypervisor. Our 
proposed implementation prevents malicious VM users to modify 
well known frequently executed programs. 

Keywords: cloud, IDS, anomaly detection, system call, xen, finger 
print. 

I.  INTRODUCTION 
Cloud Computing has evolved as a major platform that 

provides a variety of services on a pay per usage model. It 
provides services at software, platform and application layer. 
The US National Institute of Standards and Technology (NIST) 
have captured five essential cloud characteristics: on-demand 
self-service, ubiquitous network access, resource pooling, rapid 
elasticity and measured service [1]. Because of the various 
services it provides and the ease of access to services in a 
cloud, it is vulnerable to a large number of network and host 
based attacks [2]. However the concept of Cloud Computing is 
not new but due to its globalization and enormous usage there 
is an immediate requirement to look at its security aspects. 

Cloud is basically of two types: Compute Cloud and Data 
Cloud. The Cloud which provides computing power as a 
service comes under the category of compute cloud while 
others providing storage services are known as data cloud. 
Both of these cloud service model have different requirements 
with respect to their security. For example, securing a Compute 
Cloud majorly include detection of intrusive system call 

sequences, malwares, trojans that are targeting to disrupt the 
computational efficiency provided by the cloud vendor, while 
securing a data cloud will mainly focus on network based 
attacks that may try to get access to unauthorized information 
stored in it.  

It is found that a large category of attacks are launched 
through malicious VM’s allocated to the cloud users. Major 
attacks identified till date includes DDoS attacks from virtual 
machines (VM’s), VM Hoping, VM Rootkit, VM escape etc. 
Attackers target the Cloud infrastructure for consuming 
bandwidth, storage capacity and processing power.  

In case of network based attacks such as TCP SYN 
Flooding, malicious VM’s generate and send large number of 
TCP SYN packets to the privileged domain or other 
neighboring VM’s to consume bandwidth, storage and 
processing power of the end systems and hence will decrease 
the quality of cloud services. Many other attacks launched from 
malicious VM’s that utilizes network vulnerabilities include 
buffer overflow attacks, network sniffing etc.  

There are other attacks that utilize vulnerabilities in the 
virtualization environment used for allocation of cloud 
infrastructure. Such vulnerabilities present in virtualization 
environment are because of improper configuration of services 
provided to the cloud users. There has been a lot of research 
going on to provide security to the virtualization software such 
as hypervisors [3] so that commonly known VM based attacks 
that utilizes hypervisors miss-configuration and vulnerabilities 
can be minimized [4].  

It has been noticed that cloud vendors are more interested 
in increasing the compute power of the clouds with 
minimization of resources so that the available services can be 
delivered at low cost and new services can be added to it. 
Hence any defensive mechanism to tackle well known attacks 
on cloud can only be taken into practice if it adds low cost to 
the cloud infrastructure for its deployment, maintenance and 
operation. Existing solutions such as IDS, IPS which are 
proposed for securing cloud infrastructure focus more on 
providing robust security to the cloud users and vendors but 



they lack in providing a solution that can be deployed 
efficiently to the cloud infrastructure [5].  

In this paper an approach for anomaly detection in cloud 
environment is presented which is based upon statistical 
analysis of system call sequences generated by the virtual 
machines to the hypervisor. Existing schemes for detection of 
malicious system calls from virtual machines on cloud 
infrastructure does not focus on statistical analysis of system 
call sequences rather focus on integrity of individual system 
calls. It will help in detecting a malicious system call but not 
malicious system call sequences which decrease the probability 
of detecting an intrusive call sequence if present in frequently 
used system call sequences. 

 

II. RELATED WORK 
The research presented in this paper is related to anomaly 

detection for severity analysis in virtual machines. It is based 
on the statistical analysis of malicious system call sequences 
which are generated by the virtual machines. So we have 
drawn the existing literature in this area so that a comparative 
analysis could be made with our scheme. 

Forest et al. [6] presented a method for anomaly intrusion 
detection at the process level. Discrimination is made between 
normal and abnormal characteristics. Normal is defined as 
short sequences of system calls that are generated by running 
privileged processes. Using this method they were able to 
detect various attacks like buffer overflow, symbolic link attack 
etc. 

Lee et al. [7] extended the work of Forest et al. and 
identified the normal and abnormal patterns in Unix processes. 
Machine Learning based approach was used to identify misuses 
and intrusions in UNIX system. They applied RIPPER, a rule 
learning program to the audit data of UNIX sendmail program. 

Warrender et al. [8] proposed a method for detecting 
intrusions using intrusive system calls. In this the sequence of 
system calls was identified in the kernel of an operating 
system. For experimentation they compared 4 methods for 
observing normal behaviors and detecting intrusions based on 
system calls in privileged processes. This scheme however is 
not specific to cloud computing platform. 

Ghosh et al. [9] used ANN (artificial neural network) 
techniques to learn normal sequences of system calls for 
specific UNIX system programs. More than 150 program 
profiles were established. For each program, a neural network 
was trained and used to identify anomalous behaviour. They 
used DARPA dataset for establishing profiles. 

Liao et al. [10] proposed text categorization techniques for 
intrusion detection. Here instead of the storing short sequences 
of system calls, frequencies of system calls are used to identify 
the program behavior using kNN classifier. The kNN classifier 
is used to classify program behavior as normal or intrusive. 

Ye et al. [11] proposed an intrusion detection approach for 
system call sequences and rule extraction. In this paper, an 
approach for anomaly intrusion detection is presented and 
applied to monitor the abnormal behavior of processes. The 
approach is based on rough set theory and capable of extracting 

a set of rules with the minimum size to form a normal behavior 
model from the record of system call sequences generated 
during the normal execution of a process. It may detect the 
abnormal operating status of a process. The normal behavior 
model in terms of the system call sequences is defined. And the 
detection algorithm is given for the application of rough set 
theory in intrusion detection. The illustrative example shows 
that it is feasible and effective. 

Bharadwaja et al. [12] proposed Collabra which is 
integrated with every virtual machine monitor and acts as a 
filtering layer to detect attacks and prevent illicit access to the 
VMM and the host. It also performs filtering of malicious 
hyper calls at the guest OS level before routing the call to the 
VMM. This scheme however does not looks for intrusive 
system call sequences which can help in preventing an attack 
before it is targeted if the system call sequence falls outside any 
valid system call sequences. 

Jin et al. proposed VMFence [13] which is used to monitor 
network flow and file integrity in real time. But this 
architecture is more computationally complex as it checks for 
attack patterns from data coming via all VM’s connected to the 
privileged domain. Also it does not take into account malicious 
system call sequences from VM’s targeted on the cloud 
infrastructure. 

Arshad et al [14] proposed an automatic intrusion diagnosis 
approach for clouds. In this paper they have analysed a set of 
three security attributes i.e. availability, confidentiality and 
integrity. They have categorized all the attacks on the basis of 
these three security attributes. Then they have identified what 
kind of attack is being generated by the system calls and 
mapped those system calls to any one of these attributes. Both 
supervised and unsupervised methods have been used for 
preparing the training datasets. However the implementation on 
virtual machines or real cloud environment is not 
demonstrated. 

Arshad et al. [15] proposed a novel intrusion severity 
approach for cloud. They are focused on presenting a machine 
learning based approach which make use of virtual machine 
specific parameters such as security requirement, SLA state 
and frequency of attack. They have demonstrated that the 
proposed approach is effective to address the  severity analysis 
in Cloud. But it does not detect attacks from malicious system 
call sequences. 

 

III. PROPOSED WORK 
According to our studies, we have identified that there is an 

immediate need of security against malicious insiders and users 
that can attack cloud environment by manipulating execution 
of frequently used programs for performing malicious 
operations over cloud. 

 We have proposed a new approach to intrusion detection 
[19-27], which detects malicious system call sequences of 
well-known programs. The term “well known programs” refers 
to those programs that are frequent in their execution and 
whose signature of execution remains fairly constant with 
respect to time. Our proposed implementation prevents 
malicious VM users or cloud insiders to modify well known 



frequently executed programs. These programs can be those 
which are allocated to a particular VM User as software or 
programs that are related with the functioning of VM’s such as 
networking, configuration or operation of the cloud system.  

The word program is abstracted here and it can imply any 
executable instance which runs on VM for providing services. 
One of the known examples can be of a well-known .exe file 
provided to VM users that is automatically executed from 
remote privileged domain when a VM particular to a user starts 
and connected with the network. As it is stored on the VM a 
malicious user is always free to remove it and create a new 
copy of it with same code but malicious code inserted into it. 
Such malicious code can result into malicious system calls to 
get executed from the VM that may target to get extra 
privileges of other virtual machines. An intelligent user may 
use malicious system call fired from execution of the program 
to disable some of security controls and policies over its own 
VM.  

Our proposed scheme overcomes the above scenario by 
keeping an eye over the execution of well-known programs. 
We in our scheme take and store the finger print of such well 
known programs in terms of system call sequence arrays and 
use the same finger print to verify their correctness every time 
they are fired from a VM. We are different from other schemes 
that store valid system call sequences for execution of a single 
or defined set of programs. Our scheme creates individual 
arrays for each system call that contain immediate next valid 
system calls, and this array is created from analysis of a set of 
well-known programs. 

For creating such arrays, we have taken system call logs of 
normal program execution as a base for detection of anomaly 
and our storage data structure for capturing the finger print of 
execution of program is in terms of an array. Individual array is 
created for each system call that comes in the normal execution 
of the program. The array consists of the System call number 
of the system call for which it is created with next indices 
containing the consecutive next system calls that are executed 
just immediately after it any time during the execution of the 
well-known program. So for example if we have N different 
system calls we have N different arrays for each system call 
each containing next system calls that are fired just after it 
during execution. For each well-known program whose 
execution is vulnerable, and manipulations are probable over it, 
we analyze its execution of system calls and create such 
fingerprint for it. This finger print for the program is stored and 
used in future for detection of malicious system calls detection. 
Finger print is created and stored in both normal and abnormal 
but authentic conditions of program executions. Hence finger 
print is assured to contain all the possibilities that can happen 
under normal program execution conditions. Our detection is 
signature based as if the finger print of normal program 
execution does not matches with the signature obtained from 
system call logs gathered from everyday execution of the 
program, an abnormal session is detected.  

During detection phase whenever the program is executed a 
system call log is created with the use of system call tracer in 
privileged domain. From the log same finger print or array’s 
for each system call is created in the same fashion. Then a one 
to one matching of those finger prints is done. If any 
mismatches are found an abnormal session gets recorded in the 

privileged domain and notified to the cloud administrator. The 
notification can be in terms of messages that contain the system 
log name in which an anomaly is detected. This will allow 
cloud admin to trace back the anomalous execution and do the 
necessary actions over the VM from which such sessions are 
recorded. 

The Finger print creation strategy from system call logs is 
specified in Figure2. In this Figure system calls are extracted 
from system call logs. System call logs are obtained with the 
use of utility programs such as Strace and Ntrace. They are 
then mapped to their respective system call numbers as present 
in the mapping file.  

The mapping file relates each system call with its unique 
system call number that is uniquely identifiable and easy to use 
and remember. The final Sys call log with System call 
Numbers is used for generating the individual system call array 
for each system call for a set of well-known program 
executions. The collection of all such arrays will result in a 
finger print of normal program executions. This finger print is 
not created in just one program execution, but it is analyzed 
and verified in various execution of the a single and set of  
program so that it is assured that finger point that will then be 
used for verification does not varies.  

This Finger print is stored as a base for anomalous session 
detection. Now every time this program is executed from VM a 
system call log is created for the program execution and again 
the same method is applied for creation of system call array or 
fingerprint of program execution. This Finger print is matched 
with the base fingerprint stored for that program in privileged 
domain if it matches this is not a problem and if it shows 
mismatches proper notification is propagated to Cloud admin 
about the anomalous executions so that necessary actions can 
be taken.    

Figure1  depicts how system calls fired from 
application or program executions are captured from Strace and 
collected as system logs. These system logs are then looked for 
individual system call names so that they can be mapped to 
their corresponding unique system call number according to the 
mapping provided in the Mapping file. Now for each unique 
system call as obtained from system call logs an array is 
created which stores the system call numbers of the immediate 
system calls that are called after it in the program execution. 
This array is not only for a single program execution.  

This finger print is not only for a single program execution 
but this will store signature of valid system call sequences for a 
set of well-known programs. Here by well-known program we 
mean those programs which are vulnerable to malicious code 
insertions that can change the order of system call execution of 
that program. Hence the finger print created will inform for any 
subversion in the normal program executions. Figure2 explains 
how the system call finger print of a program execution is 
compared with finger print of set of well-known programs 
stored in finger print database for ensuring its validity. In 
example as all the arrays values matches with the values 
present in finger print database, it signifies that the execution 
sequence of system call is valid and is not subverted. 



IV. IMPLEMENTATION DETAILS 
For showing a demo implementation we have installed a 
system call logger for windows called Ntrace [16]. Similarly a 
system call logger for Linux environment called Strace [17] 
has been also used in our prototype implementation and 
analysis. These program logs the system calls fired during a 
program execution. Virtual machines are assigned to users 
which fire commands to be executed by the hypervisor and 
their system call logs are stored in the privileged domain Dom-
0 in xen [18]. We collect such system call logs for each 
program or executable by running them and then looking for 
the system calls which are executed by them.  
 

 
Figure1. Snapshot of System call log from a Program 

Execution 
 
The system call pattern of a particular well known program 
remains same always and varies in some defined way in valid 
abnormal conditions. By system call pattern we mean the 
sequence of system calls with their number and calling order, 
fired by the program to the underlying operating system. From 
the system call logs we gather all the individual unique system 
calls which are then mapped to their system call numbers. If for 
that system call the array already exists in the signature 

database we do not create a new array for it however if that 
system call is a new system call in the database we will create a 
new array for it. Whether the array is present or absent the 
immediate next system call following that system call are 
appended to that array in the next available index location. The 
finger print database remains same and also the array of the 
individual unique system call numbers. When a new program is 
executed for analysis the system calls are extracted and the 
entries of immediate next system calls are made in the same 
database in their corresponding array location. If the entry 
already exists it is not entered again however if it is not there 
the new entry is made in the next available index for a 
particular system call.  

In this way the finger print database is created for a 
set of well-known programs executions. But the analysis of 
each program execution is done several times in different 
conditions to ensure that the execution signature does not vary. 
Figure 1 gives a snapshot of system calls log of a particular 
program execution from which unique system calls are 
extracted for finger print database creation and updation. 

The system call logs for a particular application are 
analyzed and individual system calls are extracted. These are 
then mapped to a sys call number (Sys No) via the mapping file 
which is stored in Dom-0. During detection the same procedure 
is followed for creation of individual array for individual 
program execution from their system call logs collected. The 
finger print is created in the same manner. For each system call 
an array is created that contains the immediate next system 
calls executed after it. The array is then looked into finger print 
database for matching of the system calls if such a match 
occurs then it represents that the signature of execution is valid 
and there is no subversion in program execution. 

The fingerprint as explained in Figure 2 is then created for 
the program execution. But the finger print is created after 
analysis for a particular program in its normal and abnormal 
executions. We have analyzed various program executions for 
various executable to verify that system calls for normal 
execution of a program does not frequently varies in practice. 
We have developed the Fingerprint generation technique as 
proposed in the architecture however its efficient deployment 
over cloud and results evaluation is currently in progress. 

V. CONCLUSIONS 
In this paper, an approach for detection of malicious 

program executions in Cloud environment is proposed, which 
is based upon analysis of system call sequences generated by 
the virtual machines programs to the hypervisor. Our proposed 
implementation prevents malicious VM users to modify well 
known frequently executed programs. Hence it detects any 
malicious code insertions in frequent and well known program 
executions. This approach of modelling valid system call 
sequences helps in detection of system call sequences which 
are anomalous and falls outside the set of valid system call 
sequences hence result in anomaly detection. This approach 
can help in the detection of subverted operations that may be 
launched by an attacker from a VM to exploit the vulnerability 
of a particular operating system or computing platform. 



 
 

 
 

 

 
 
 

Figure 2. Finger print creation from System call logs 
 
 

 
 
 

Figure3. Detecting valid program executions from Finger print 
 
 



We have verified the initial design of the proposed solution 
and identified that it is low complex as only a single finger 
print database will be required for verification and validation 
of execution of multiple programs. We have deployed a 
prototype implementation of the same however the detailed 
implementation in real time environment with scalability and 
adaptability issues is in study.  The future work will be hence 
focused on validating the detailed implementation of it on a 
commercial cloud environment.  
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