
C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 60

SEARCH OPTIMIZATION USING HYBRID PARTICLE SUB-

SWARMS AND EVOLUTIONARY ALGORITHMS

CRINA GROSAN

1
, AJITH ABRAHAM

2
, MONICA NICOARA

1

1
Department of Computer Science

Babes-Bolyai University, Cluj-Napoca, 3400, Romania
2
IITA Professorship Program, School of Computer Science and Engineering

Chung-Ang University, Seoul 156-756, Korea

Abstract: Particle Swarm Optimization (PSO) technique proved its ability to deal with very complicated

optimization and search problems. Several variants of the original algorithm have been proposed. This paper

proposes a variant of the PSO technique named Independent Neighborhoods Particle Swarm Optimization

(INPSO) dealing with sub-swarms for solving the well known geometrical place problems. Finding the

geometrical place can be sometimes a hard task and in almost all situations the geometrical place consists of

more than one single point. Taking all these into account, the INPSO algorithm is very appealing for solving this

class of problems. The performance of the INPSO approach is compared with Geometrical Place Evolutionary

Algorithms (GPEA). The main advantage of the INPSO technique is its speed of convergence (finding quick

solutions). To enhance the performance of the INPSO approach, a hybrid algorithm combining INPSO and

GPEA is also proposed in this paper. The developed hybrid combination is able to detect the geometrical place

much faster even for difficult problems for which the direct GPEA approach required more time and the INPSO

(even with few sub-swarms) approach failed in finding all the geometrical place points (solutions).

1. INTRODUCTION

Many group-living vertebrates exhibit complex, and

coordinated, spatio-temporal patterns, from the

motion of fish and birds, to migrating herds of social

ungulates and patterns of traffic flow in human

crowds. The common property of these apparently

unrelated biological phenomena, is that of inter-

individual interaction, by which individuals can

influence the behavior of other group members.

Self-organization theory suggests that much of

complex group behavior may be coordinated by

relatively simple interactions among the members of

the group. Following this theory, in 1995, Kennedy

and Eberhart developed some algorithms that

modeled the "flocking behavior" seen in many

species of birds (Eberhart and Kennedy, 1995).

Different from the evolution-motivated computation

techniques, a relatively new evolutionary paradigm,

called Particle Swarm Optimization (PSO) had been

discovered through simplified social model

simulation.

Evolutionary Computation (EC) techniques use a

population of potential solutions (points) of the

search space. These solutions (initially random

generated) are evolved using different specific

operators which are inspired from biology. Through

cooperation and competition among the potential

solutions, these techniques often can find optima

quickly when applied to complex optimization

problems. Evolutionary computation includes

Genetic algorithms (GA) [Goldberg, 1989],

Evolution Strategies (ES) [Rechenberg, 1994],

Genetic Programming (GP) [Koza, 1992] and

Evolutionary Programming (EP) [Fogel, 1994].

PSO shares many similarities with evolutionary

computation techniques such as genetic algorithms.

The system is initialized with a population of

random solutions and searches for optima by

updating generations. However, unlike GA, PSO has

no evolution operators such as crossover and

mutation. In PSO, the potential solutions, called

particles, fly through the problem space by

following the current optimum particles. There are

some similarities between PSO and Evolutionary

Algorithms [Angeline, 1998]:

• both techniques use a population (which is called

swarm in the case of PSO) of solutions from the

search space which are initially random

generated;

• do not require auxiliary knowledge of the

problem;

• solutions belonging to the same population

interact with each other during the search

process;

• solutions are evolved (their quality is improved)

using techniques inspired from the real world

(swarm behavior in the case of Particle Swarm

technique and ideas from human genetics in the

case of Evolutionary Algorithms);

• can provide more than one solution at the end of

search process and the final choice is left to the

user.

Even then, there are still many differences between

these two techniques. In what follow, we will apply

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 61

both techniques for solving a well known class of

search problems: geometrical place problems. It is

well known that in the case of these problems a set

of points which accomplish a given condition (or a

set of conditions) is searched. In many situations, the

searched geometrical place consists in more than one

point (solution). That's the main reason we think the

evolutionary techniques (particularly Evolutionary

Algorithms) and Particle Swarm are fit for this

problem, mainly due to their ability to deal with a

population of solutions in the same time.

We propose a new PSO technique (INPSO) which is

based on the basic PSO algorithm proposed by

Eberhart and Kennedy in 1995 (Eberhart and

Kennedy, 1995). Some related work with the

existing PSO variants can be found in [Eberhart and

Kennedy, 1995; Eberhart et al., 1996; Eberhart and

Shi, 2001; Kennedy and Eberhart, 1995; Kennedy,

1997a; Kennedy, 1997b; Kennedy, 1998a; Kennedy,

1998b; Shi and Eberhart, 1998a; Shi and Eberhart,

1998b; Shi and Eberhart, 1999].

Geometrical Place problems have already been

investigated using Evolutionary Algorithms (GPEA)

(Grosan, 2004, Grosan et al., 2005a). The main

scope of our paper is to perform a comparison

between INPSO and GPEA and to exploit the

weakness/strength of each of them. Finally, taking

into account the results, we propose a hybrid

algorithm combining INPSO and GPEA which

seems to perform better in complicated situations

than each of these techniques applied separately

(Grosan et al., 2005b). The paper is structured as

follows: Section 2 presents the fundamentals of PSO

technique. Section 3 briefly describes the INPSO

technique proposed in this paper. The general

evolutionary algorithm is described in Section 4 and

the proposed hybrid INPSO-GPEA technique is

presented in Section 5. In Section 6 some

experiments considering different test problems are

performed. A set of conclusions and remarks are

presented towards the end.

2. PARTICLE SWARM OPTIMIZATION

TECHNIQUE

Like other evolutionary computation techniques,

PSO is a population-based search algorithm and is

initialized with a population of random solutions,

called particles [Hu et al., 2004]. Unlike in the other

evolutionary computation techniques, each particle

in PSO is also associated with a velocity. Particles

fly through the search space with velocities which

are dynamically adjusted according to their

historical behaviors. Therefore, the particles have

the tendency to fly towards the better and better

search area over the course of search process. The

PSO was first designed to simulate birds seeking

food which is defined as a 'cornfield vector'

[Kennedy and Eberhart, 1995].

Assume the following scenario: a group of birds are

randomly searching food in an area. There is only

one piece of food in the area being searched. The

birds do not know where the food is. But they know

how far the food is and their peers' positions. So

what's the best strategy to find the food? An

effective strategy is to follow the bird which is

nearest to the food.

PSO learns from the scenario and uses it to solve the

optimization problems. In PSO, each single solution

is like a 'bird' in the search space, which is called

'particle'. All particles have fitness values which are

evaluated by the fitness function to be optimized,

and have velocities which direct the flying of the

particles. (The particles fly through the problem

space by following the particles with the best

solutions so far). PSO is initialized with a group of

random particles (solutions) and then searches for

optima by updating each generation.

Each individual is treated as a volume-less particle

(a point) in the D-dimensional search space. The i
th

particle is represented as Xi = (xi1, xi2,…, xiD). At

each generation, each particle is updated by the

following two 'best' values. The first one is the best

previous location (the position giving the best fitness

value) a particle has achieved so far. This value is

called pBest. The pBest of the i
th

 particle is

represented as Pi=(pi1, pi2,…, piD). At each iteration,

the P vector of the particle with the best fitness in

the neighborhood, designated l or g, and the P vector

of the current particle are combined to adjust the

velocity along each dimension, and that velocity is

then used to compute a new position for the particle.

The portion of the adjustment to the velocity

influenced by the individual's previous best position

(P) is considered the cognition component, and the

portion influenced by the best in the neighborhood is

the social component. With the addition of the

inertia factor, ω, by Shi and Eberhart (Shi and

Eberhart, 1998) (brought in for balancing the global

and the local search), these formulas are:

vid = ω * vid + η� * rand() * (pid - xid) + η2 * Rand() *

(pgd - xid) (a)

xid = xid+vid (b)

where rand() and Rand() are two random numbers

independently generated in the range [0,1] and η1

and η2 are two learning factors which control the

influence of the social and cognitive components. In

(a), if the sum on the right side exceeds a constant

value, then the velocity on that dimension is

assigned to be ±Vmax. Thus, particles' velocities are

clamped to the range [-Vmax, Vmax] which serves as a

constraint to control the global exploration ability of

particle swarm. Thus, the likelihood of particles

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 62

leaving the search space is reduced. Note that this

not restrict the values of Xi to the range [-Vmax, Vmax];

it only limits the maximum distance that a particle

will move during one iteration. The main PSO

algorithm as described by Pomeroy [Pomeroy, 2003]

is as follows:

/* set up particles' next location */

 for each particle p do {

 for d = 1 to dimensions do {

 p.next[d] = random(...)

 p.velocity[d] = random(deltaMin, deltaMax)

 }

 p.bestSoFar = initialFitness

}

/* set particles' neighbors */

for each particle p do {

 for n = 1 to numberOfNeighbors do {

 p.neighbor[n] = getNeighbor(p, n)

 }

}

/* run Particle Swarm Optimizer */

while iterations <= maxIterations do {

 /* Make the "next locations" current and then */

 /* test their fitness. */

 for each particle p do {

 for d = 1 to dimensions do {

 p.current[d] = p.next[d]

 }

 fitness = test(p)

 if fitness > p.bestSoFar then do {

 p.bestSoFar = fitness

 for d = 1 to dimensions do {

 p.best[d] = p.current[d]

 }

 }

 if fitness = targetFitness then do {

 ... /* e.g., write out solution and quit */

 }

 } /* end of: for each particle p */

 for each particle p do {

 n = getNeighborWithBestFitness(p)

 for d = 1 to dimensions do {

 iFactor = iWeight * random(iMin, iMax)

 sFactor = sWeight * random(sMin, sMax)

 pDelta[d] = p.best[d] - p.current[d]

 nDelta[d] = n.best[d] - p.current[d]

 delta = (iFactor * pDelta[d]) + (sFactor *

nDelta[d])

 delta = p.velocity[d] + delta

 p.velocity[d] = constrict(delta)

 p.next[d] = p.current[d] + p.velocity[d]

 }

 } /* end of: for each particle p */

} /* end of: while iterations <= maxIterations */

end /* end of main program */

/* Return neighbor n of particle p */

function getNeighbor(p, n) {

 ...

 return neighborParticle

}

/* Return particle in p's neighborhood */

/* with the best fitness */

function getNeighborWithBestFitness(p) {

 ...

 return neighborParticle

}

/* Limit the change in a particle's */

/* dimension value */

function constrict(delta) {

 if delta < deltaMin then

 return deltaMin

 else

 if delta > deltaMax then

 return deltaMax

 else

 return delta

}

3. PSO ADAPTED FOR GEOMETRICAL

PLACE PROBLEMS

Since geometrical place problems usually suppose to

find a set of points which accomplish a given

condition, any evolutionary technique which deals

with a population of solutions (a set of individuals)

would be an ideal technique. The standard PSO

algorithm uses a population of particles. In the

search process, particles are supposed to follow the

best particle from the population. This way, there is

a probability that all particles will converge in the

same point of the search space. But in the case of

the geometrical place problems, the search place

consists of more than one point. Consequently, we

need to adapt the PSO technique so as to obtain

multiple different points at the end of the search

process. The idea of using sub-swarms or

neighborhoods seems to be ideal for our problem.

This way, we can obtain the maximum number of

solutions which is equal to the number of sub-

swarms assuming that all sub-swarms will converge

to different points in the search space. The proposed

PSO algorithm is similar to the classical ones which

use neighborhoods [Brits et al., 2002; Peer et al.,

2003] but still there are some differences which are

described below.

We consider the PSO algorithm with neighborhoods,

but not overlapping ones as usual. Thus, the particles

in the swarm 'fly' in independent sub-swarms. It is

just like dividing the swarm into multiple

independent 'neighborhoods'. The dimension of each

neighborhood (sub-swarms) is the same for all

considered sub-swarms.

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 63

The reason for not choosing overlapping

neighborhoods is that in the case of the studied

problem (solving geometrical place problems) the

solution consists of a set of points and is not only a

single point. Instead of searching for one single

point as the final solution it is required to search for

a set of points having the same property but

independent from one another.

In the classical PSO, each solution will follow the

best solution in the swarm or the best solution

located in its neighborhood. This means, finally all

solutions will converge to the same point (which is

given by the position of the best particle in the

swarm). But for the geometrical place problem we

need to find a set of different solutions.

By considering different sub-swarms, the number of

solutions which can be obtained at the end of the

search process might be at most equal to the number

of sub-swarms (this in case each sub-swarm will

converge to a different point). Taking into account

all these considerations, we will consider small sub-

swarms (having usually few particles - 4 or 5) so

that we have the chances to obtain, finally, a greater

number of different points. The way in which these

sub-swarms work is depicted in Figure 1. We

consider 5 sub-swarms. Each sub-swarm contains

the same number of particles (6 nos). The

geometrical place is supposed to be the eclipse in the

middle. Particles in each sub-swarm will follow the

best particle found so far in their own sub-swarm

only.

The algorithm proposed is called Independent

Neighborhoods Particle Swarm Optimization

(INPSO). The main steps of the INPSO algorithm

are described below:

INPSO algorithm

begin
 for each particle p do

 begin

Initialize with random position in the

problem space

Initialize with random velocity in the

problem space

 endfor

 while iteration ≤ max_iterations do

 begin
for each particle p do

begin
 Calculate fitness value

 if the fitness value is better than its

best fitness value in history

 then

 begin
 Update pbest

 if the fitness value attained a

minimum criteria

 then

 Stop particle p in the

current pbest location

 endif

 end

 endif

 endfor

 for each particle p do

 begin

 Identify the particle in the

neighborhood with the best fitness

value so far as the lbest

 Assign its index to the variable l

 if particle p is not stopped

 then

 begin

 Calculate particle velocity

according to equation (a)

 Update particle position

according to equation (b)

 end

 endfor

 end

end.

When a particle finds a feasible solution (its fitness

value attains minimum) it is obvious there is no need

to continue ‘flying’' and thus the particle can stop at

that pBest location. But the particle will continue to

share its experience with its still 'flying' neighbors

(particles belonging to the same sub-swarm).

4. EVOLUTIONARY ALGORITHMS FOR

GEOMETRICAL PLACE PROBEMS

Evolutionary Algorithms (EA) are stochastic search

methods inspired from the metaphor of natural

biological evolution. Evolutionary Algorithms were

introduced in 1965 by John Holland [Holland, 1975].

These algorithms operate on a population of

potential solutions applying the principle of survival

of the fittest to produce better approximations to a

solution. This population is initially randomly

generated over the search space which is the

definition domain. At each generation, operators

borrowed from natural genetics such as selection,

recombination, mutation, migration, inversion,

reinsertion, etc. are applied to the individuals from

the population. By applying genetic operators these

individuals are evolved. Each individual from

population is evaluated by using a quality (fitness)

function. Using this quality the best individuals are

selected at each generation. Many selection

mechanisms have been implemented [Baker, 1985;

Box, 1993; Goldberg 1989]. The selected

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 64

individuals are modified by applying crossover

and/or mutation operator. Various forms of these

operators can be found [Eshelman et al., 1989;

Schaffer and Morishima, 1987; Spears and De Jong,

1991; Syswerda 1989]. In this way new solutions are

obtained. Some of these new solutions can be better

than the existing solutions. There are many

modalities to accept the new solutions (also called

offspring) in population. Some algorithms accept the

new solution only if this solution is better than his

parent (or parents). The elitist algorithms accept the

new obtained solution in population. Some surveys

in Evolutionary Algorithms and their applications

can be found in [Box, 1993; Davis, 1991; Goldberg,

1989].

FIGURE 1. An example of 5 independent sub-swarms and each sub-swarm containing 6 particles.

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 65

FIGURE 2. Flow chart of an evolutionary algorithm

Grosan [Grosan, 2004] proposed a simple

evolutionary algorithm for dealing with geometrical

place problems. This algorithm is called Geometrical

Place Evolutionary Algorithms (GPEA). A real

encoding of solutions is considered. Each individual

is evaluated using an adequate fitness function.

Binary selection is applied. A convex crossover

operator [Goldberg, 1989] is applied over selected

individuals. The best between parents and offspring

enters the new population. Over this new obtained

population mutation operator is applied. Individuals

obtained after these steps will constitute the

population of the next generation. These steps are

repeated for a specified number of generations.

GPEA is presented below.

GPEA description

begin

 Set t = 0;

 Randomly initialize the population P(t) of size

popsize;

 Repeat

 Evaluate population P(t);

 for i:= 0 to popsize do

 begin

 Select two parents from P(t);

 Apply crossover over selected

parents and obtain an offspring;

 Mutate the best between parents and

offspring and add it to population

P’(t).

 end;

 t = t + 1;

 P(t) = P’(t – 1);

 Until t = Number of generations.

end.

5. HYBRID INPSO – GPEA APPROACH

Our preliminary experiments indicated that the

INPSO approach converges faster when compared to

GPEA (less number of iterations). But, for some

difficult problems we found that some sub-swarms

of INPSO could not converge (even if the number of

generations is increased drastically). GPEA always

converges to the solution, but compared to INPSO it

is time consuming. Taking these into account, we

propose a hybrid of INPSO and GPEA. First, we

will exploit INPSO’s ability to converge very fast

and then, we will use GPEA’s advantage to always

converge to the solution. After 100 generations of

INPSO approach we will switch to GPEA (the

solutions which failed earlier using INPSO is

expected to converge using additional iterations of

GPEA). GPEA chromosomes consist of the existing

INPSO particles, with their current location. GPEA

uses real representation of solutions. Gaussian

Generate initial

population

Evaluate

population

Is the

termination

condition

satisfied?

Yes

No

Select best

individuals

Print the results

Selection

Recombination

Mutation

Generate a new

population

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 66

mutation and convex crossover are the only genetic

operators used.

6. EXPERIMENT SETUP AND RESULTS

We performed 6 different experiments comparing

INPSO performances with GPEA approach. For

each problem considered in experiments we run each

algorithm 20 times and we considered the worst

results. INPSO and GPEA are applied for the same

initial population. Experiment results are graphically

illustrated in Figures 3-11. As we can see from the

experiments results, INPSO converges faster when

compared to GPEA (less number of iterations). But,

for some difficult problems (Figures 8-11), it could

be found that some sub-swarms could not converge

(even if the number of generations are increased

drastically). GPEA always converges to the solution,

but compared to INPSO it is time consuming.

The values of the main parameters used by INPSO

and GPEA in experiments are presented in Table1.

For all the considered problems, the performance of

the hybrid INPSO-GPEA technique is presented in

Figures 3-11.

Value
Parameter

INPSO GPEA

Population size 500 500

Sub-swarms size 4 -

ηx, ηy 1.49445 -

Vmax 0.1 * Xmax -

Inertia weight 0.5 + Rnd/2.0 -

Sigma - 1

Mutation probability - 0.5

Crossover

probability

- 0.7

Table 1. Parameters of INPSO and GPEA

Both ηx, ηy are set to 1.49445 according to the work

by Clerc [Clerc, 1999]. The obvious reason is it will

make the search cover all surrounding regions which

is centered at the pBest and lBest. A randomized

inertia weight is used, namely it is set to

[0.5+(Rnd/2.0)], which is selected in the spirit of

Clerc's constriction factor [Eberhart and Shi, 2001].

Vmax is set to 0.1* Xmax. The value of Vmax is usually

chosen to be k * Xmax, with 0.1 ≤ k ≤ 1.0 [Eberhart et

al., 1996]. Each of the considered problems is

described in the following sub-sections.

6.1 Problem 1: Circle

Geometrical place of the points M for which the

distance (in absolute value) to a given point C is

constant and equal to k. Geometrical place is the

circle having as center the given point C and ray

equal to k. Results obtained by INPSO, GPEA and

the hybrid algorithms are depicted in Figure 3.

Figure 3 (a) refers to INPSO, Figure 3 (b) refers to

GPEA and Figure 3 (c) to the hybrid INPSO –

GPEA approach. We denoted by N the number of

generations.

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 67

N = 100

N = 200

N = 400

N = 500

(a)

N = 100

N = 500

N = 750

N= 1000

(b)

N = 100

N = 200

N = 300

N = 375

(c)

FIGURE 3. Circle (a) INPSO, (b) GPEA (c) Hybrid INPSO – GPEA

As we can see from Figure 3 (a), INPSO particles

converge (almost all of them) in 200 generations.

Finally, after 500 generations all particles converged

while GPEA needs 1000 generations for all

individuals to converge. For the hybrid INPSO-

GPEA (first INPSO for 100 iterations and thereafter

GPEA) approach, all the particles (individuals)

converged after 375 generations. Number of

particles that did not converge in 100 generations by

applying INPSO is 8 (from a population). If the

swarm size is 100 particles, then all of them

converge in 100 generations. From a swarm of 200

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 68

individuals, 2 particles will fail to find the

geometrical place. The number of particles which

will not converge increases with the population size.

This will be 4 for a swarm of 300 particles and 5 for

400 particles respectively. We use a greater number

of particles so that the geometrical place could be

clearly visualized.

6.2. Problem 2: Ellipse

Geometrical place of the points M for which sum of

distances to two given point F1 and F2 is constant

and equal to a given number k. In this case, the

geometrical place consists of the ellipse having as

focuses points F1 and F2. Results obtained by

INPSO, GPEA and hybrid INPSO – GPEA are

depicted in Figure 4.

N = 100

N = 200

(a)

N = 100

N = 1000

N = 1200

N= 1500

(b)

N = 100

N = 200

(c)

Figure 4. Ellipse (a) INPSO, (b) GPEA, (c) Hybrid INPSO – GPEA

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 69

N = 100

N = 200

N=300

(a)

N = 100

N = 150

N = 200

(b)

N = 100

N = 150

N = 200

(c)

FIGURE 5. Hyperbola (a) INPSO, (b) GPEA, (c) Hybrid INPSO – GPEA

As depicted in Figure 4 (a) INPSO converged much

faster when compared to GPEA. In about 100

generations almost all particles converged. After 200

generations all particles converged while GPEA

required about 1200 generations for all the particles

to converge. The hybrid INPSO–GPEA approach

converged in a similar way as INPSO. Number of

particles that did not converge within 100

generations by applying INPSO is 7 (out from a

population). If swarm size is 100 particles, then all

of them converged in 100 generations. From a

swarm of 200 individuals, only a single particle

failed in finding the geometrical place. The number

of particles that will not converge is 4 for a swarm of

300 particles and 6 for 400 particles respectively.

6.3. Problem 3: Hyperbola

Geometrical place of the points M for which the

difference (in absolute value) to two given points F1

and F2 is constant and equal to a given number k.

The geometrical place is the hyperbola having the

foci with points F1 and F2 respectively. Results

obtained by INPSO, GPEA and hybrid INPSO-

GPEA are presented in Figure 5. From Figure 5, it is

evident that the GPEA converges faster than INPSO.

It needs only 200 generations for GPEA to converge

while for INPSO it required 300 generations. The

hybrid INPSO–GPEA approach took 200

generations to converge. Number of solutions that

did not converge after 100 generations by applying

INPSO is equal to 2.

6.4. Problem 4: Parabola

Geometrical place of the points M those are

equidistant from a point F (the focus) and a line (the

directrix). Results obtained by INPSO, GPEA and

hybrid INPSO – GPEA) are presented in Figure 6.

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 70

N = 100

N = 150

N = 200

(a)

N = 100

N = 500

N = 1000

N= 1200

(b)

N = 100

N = 150

N = 200

(c)

FIGURE 6. Parabola (a) INPSO, (b) GPEA, (c) Hybrid INPSO – GPEA

As illustrated in Figure 6, GPEA converges very

slowly. It needs about 1200 generations until all

solutions are converge to the geometrical place.

INPSO and the hybrid INPSO – GPEA algorithms

converged within 200 generations. Number of

particles that failed to converge in 100 generations

by applying INPSO is 28 (from a population of 500

individuals). For INPSO of size 100 particles, all the

particles converged within 100 generations.

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 71

N = 100

(a)

N = 100

N = 1000

N = 1200

N= 1500

(b)

N = 100

(c)

FIGURE 7. Lines (a) INPSO, (b) GPEA, (c) Hybrid INPSO – GPEA

For a swarm of 200 individuals, 8 particles failed to

find the geometrical place. The number of particles

that did not converge is 12 for a swarm of 300

particles and 24 for a swarm of 400 particles

respectively.

6.5. Problem 5: Lines

Geometrical place of the points M which are

equidistant from two given convergent straight lines.

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 72

N = 100

N = 500

N = 1000

N = 1000

(a)

N = 100

N = 500

N = 750

N= 1000

(b)

N = 100

N = 200

N = 300

N=350

(c)

FIGURE 8. Oval of Cassiani (a = 100, c = 150) (a) INPSO, (b) GPEA, (c) Hybrid INPSO–GPEA

The geometrical place consists of two straight lines

which are the bisecting lines for all angles which

these two lines (and their extensions) can form.

Results obtained by INPSO, GPEA and hybrid

INPSO – GPEA are depicted in Figure 7. As

evident from Figure 7, INPSO has converged very

fast (in about 100 generations) while GPEA took

nearly 1500 generations. In this case, there is no

need to hybridize INPSO and GPEA.

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 73

N = 100

N=300

N=700

N = 1000

(a)

N=100

N=500

N = 700

N= 1100

(b)

N=100

N=200

N = 300

N = 325

 (c)

FIGURE 9. Oval of Cassiani (a = 150, c = 142) (a) INPSO, (b) GPEA, (c) Hybrid INPSO–GPEA

6.6. Problem 6: The Oval of Cassiani

Geometrical place of the points M for which the

product of distances to two given points F1 (-c, 0)

and F2(c, 0) is constant and equal to a constant a
2
.

The geometrical place for this problem is called the

oval of Cassiani. We can identify four different

situations for different values of a and c. These four

situations are:

1) a < c;

2) c < a < c 2 ;

3) a > c 2 ;

4) a = c.

Each of these situations is analyzed in the following

sub-sections.

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 74

N = 100

N=300

N=500

N = 1000

(a)

N=100

N=500

N = 750

N= 1000

(b)

N=100

N=200

N = 300

 (c)

FIGURE 10. Oval of Cassiani (a = 143, c = 100) (a) INPSO (b) GPEA (c) Hybrid INPSO–GPEA

5.6.1 Case a < c

We consider the following values: a = 100, c = 150.

Results obtained by INPSO, GPEA and hybrid

INPSO – GPEA are depicted in Figure 8. Figure 8

illustrates the effectiveness of using the hybrid

approach. Both INPSO and GPEA require more

than 1000 generations to converge to the

geometrical place. The hybrid approach will

converge in 350 generations. Number of particles

that failed to converge in 100 generations by

applying INPSO is 190 (from a population of 500

individuals). For a swarm of size 100 particles, 40

particles did not converge in 100 generations. For a

swarm of 200 individuals, 72 particles failed to find

the geometrical place. The number of particles that

did not converge is 121 for a swarm of 300

particles and 161 for a swarm of 400 particles

respectively.

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 75

N = 100

N = 300

N = 500

N = 1000

(a)

N = 100

N = 500

N = 750

N= 1000

(b)

N = 100

N = 150

N = 200

(c)

FIGURE 11. Oval of Cassiani (a = c = 150) (a) INPSO, (b) GPEA (c) Hybrid INPSO – GPEA

5.6.2 Case c < a < c 2

We considered the values a = 150, c = 142. Results

obtained by INPSO, GPEA and hybrid INPSO –

GPEA are depicted in Figure 9. As evident from

Figure 9, the hybrid INPSO – GPEA approach

obtained the best results compared to INPSO

(which converged in 1000 generations) and GPEA

(which required 1100 generations to converge).

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 76

Number of particles that failed to converge in 100

generations by applying INPSO is 157 (out of a

population of 500 individuals). For a swarm of size

100 particles, 25 particles did not converge in 100

generations. For a swarm of 200 individuals, 90

particles failed to find the geometrical place. The

number of particles that will not converge is 125 for

a swarm of 300 particles and 114 for a swarm of

400 particles respectively.

5.6.3 Case Case a > c 2

We used the values 143 for a and 100 for c. Results

obtained by all three techniques are presented in

Figure 10.

For this case, the hybrid approach converged much

faster (only 300 generations) compared to INPSO

and GPEA (both converged in about 1000

generations). Number of particles that failed to

converge in 100 generations by applying INPSO is

191 (out of a population of 500 individuals). For a

swarm of size 100 particles, 32 did not converge in

100 generations. From a swarm of 200 individuals,

70 particles failed to find the geometrical place.

The number of particles that will not converge is

125 for a swarm of 300 particles and 166 for a

swarm of 400 particles respectively.

5.6.4 Case a = c

We considered the value of 150 for both a and c in

this situation. The results obtained by INPSO,

GPEA and hybrid INPSO – GPEA are depicted in

Figure 11. Compared to INPSO and GPEA, the

hybrid approach is much faster. As evident from

Figure 11, INPSO and GPEA required 1000

generations to converge. The hybrid approach

converged in about 200 generations. Number of

particles that failed to converge in 100 generations

by applying INPSO is 82 (out of a population of

500 individuals). For a swarm of size 100 particles,

18 particles did not converge in 100 generations.

For a swarm of 200 individuals, 32 particles failed

to find the geometrical place. The number of

particles that did not converge is 46 for a swarm of

300 particles and 67 for a swarm of 400 particles

respectively.

6. CONCLUSIONS

Geometrical place problems are a well known class

of mathematical problems. Even if there are

situations when these problems are trivial, there are

also situations when mathematicians spend several

hours for detecting a real geometrical place for a

given problem. We approached these problems by

using two well known intelligent techniques

namely evolutionary algorithms (GPEA) and a

variant of particle swarm optimization which uses

sub-swarms (INPSO).

We performed several experiments and

comparisons between these two techniques. As

evident from comparisons results, evolutionary

algorithms work very well for all situations. They

are less susceptible to getting 'stuck' at local optima

than particle swarm optimization techniques. But

they tend to be computationally expensive and

needs longer time to find all the solutions. For

most of the considered problems (except Oval of

Cassiani), the proposed INPSO technique could

obtain better results in a faster, cheaper way when

compared with other methods. For the Oval of

Cassiani problem, INPSO failed to converge as

expected.

Further, we exploited the advantages of these two

methods: INPSO is very fast but sometimes there

can be particles which will never converge; GPEA

is computationally slow, but always could assure

convergence. Consequently, we combined these

two techniques: by using the fast convergence

property of INPSO and the capabilities of GPEA to

locate all the solutions. In the hybrid approach,

INPSO is run for 100 iterations and then GPEA is

applied to the population obtained by INPSO. The

proposed hybrid approach seems to work very well

for all the problems considered especially for the

Oval of Cassiani problem where the GPEA and

INPSO approaches required more than 65%

iterations when compared to the hybrid approach

(INPSO-GPEA).

REFERENCES

Angeline, P. 1998, “Evolutionary Optimization

versus Particle Swarm Optimization: Philosophy

and Performance Difference”, “In Proceedings of

the 7th Annual Conference on Evolutionary

Programming”, San Diego,USA.

Baker, J. E. 1985, “Adaptive selection methods for

genetic algorithms”. In Proceedings of First

International Conference on Genetic Algorithms,

101-111.

Box, G. E. P. 1993,“Evolutionary operators: a

method for increasing industrial productivity”.

Journal Royal Statistical Society, 6: 81-101.

Brits, R., Engelbrecht, A. P., van den Bergh, F.

2002, “A Niching Particle Swarm Optimizer”. In

Proceedings of the Conference on Simulated

Evolution And Learning, Singapore.

Clerc, M. 1999, “The swarm and the queen:

towards a deterministic and adaptive particle swarm

optimization”. In Proceedings of the IEEE

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 77

Congress on Evolutionary Computation (CEC), pp.

1951-1957.

Davis, L. 1991, “Handbook of Genetic Algorithms”.

Van Nostrand Reinhold, New York.

Eberhart, R. C. and Kennedy, J. 1995, “A new

optimizer using particle swarm theory”. In

Proceedings of the Sixth International Symposium

on Micromachine and Human Science, Nagoya,

Japan. pp. 39-43.

Eberhart, R. C., Simpson, P. K., and Dobbins, R. W.

1996, “Computational Intelligence PC Tools”.

Boston, MA: Academic Press Professional.

Eberhart, R. C. and Shi, Y. 2001, ”Particle swarm

optimization: developments, applications and

resources”. In Proceedings of the IEEE Congress

on Evolutionary Computation (CEC), Seoul, Korea.

Eshelman, L. J., Caruna, R.A., Schaffer, J. D. 1989,

“Biases in the crossover landscape”. In Proceeding

of the Third International Conference on Genetic

Algorithms, J. Schaffer (ed.), Morgan Kaufmann

Publisher, Los Altos, CA, 10-19.

Fogel, L. J. 1994, “Evolutionary Programming in

Perspective: the Top-down View”. In

Computational Intelligence: Imitating Life, J.M.

Zurada, R. J. Marks II, and C. J. Robinson, Eds.,

IEEE Press, Piscataway, NJ.

Goldberg, D. E. 1989, “Genetic Algorithms in

Search, Optimization, and Machine Learning”.

Reading MA: Addison-Welsey.

Grosan C., 2004, “Solving geometrical place

problems by using Evolutionary Algorithms”. In

Proceedings of World Computer Congress, M.

Kaaniche (Ed.), Toulouse, France, pp. 365-375.

Grosan, C, Abraham A., and Nicoara, M. 2005,

“Geometrical Place Problems Using Particle Swarm

and Evolutionary Algorithms”, In Proceedings of

the 7
th

 International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing

(SYNASC'05), Timisoara, Romania, IEEE CS Press.

Grosan, C, Abraham A., Han, S.Y, and Gelbukh, A.

2005, “Hybrid Particle Swarm - Evolutionary

Algorithm for Search and Optimization”, In

Proceedings of the 4
th

 Mexican International

Conference on Artificial Intelligence, Mexico,

Lecture Notes in Computer Science, Springer

Verlag, Germany.

Holland, J. 1975, Adaptation in Natural and

Artificial Systems, University of Michigan Press,

Ann Arbor.

Hu, X., Shi Y., and Eberhart, R.C. 2004, “Recent

Advences in Particle Swarm”, In Proceedings of

Congress on evolutionary Computation (CEC),

Portland, Oregon, pp. 90-97.

Kennedy, J. and Eberhart, R. C. 1995, “Particle

Swarm Optimization”. In Proceedings of IEEE

International Conference on Neural Networks,

Perth, Australia, IEEE Service Center, Piscataway,

NJ, Vol.IV, pp.1942-1948.

Kennedy, J. 1997, “The Particle Swarm: Social

Adaptation of Knowledge”, In Proceedings of IEEE

International Conference on Evolutionary

Computation, Indianapolis, Indiana, IEEE Service

Center, Piscataway, NJ, 303-308.

Kennedy, J. 1997, “Minds and cultures: Particle

swarm implications. Socially Intelligent Agents”.

Papers from the 1997 AAAI Fall Symposium.

Technical Report FS-97-02, Menlo Park, CA:

AAAI Press, 67-72.

Kennedy, J. 1998, “The Behavior of Particles”, In

Proceedings of 7
th

 Annual Conference on

Evolutionary Programming, San Diego, USA.

Kennedy, J. 1998, “Thinking is social: Experiments

with the adaptive culture model”. Journal of

Conflict Resolution, 42,56-76.

Koza, J. R. 1992, Genetic Programming: “On the

Programming of Computers by Means of Natural

Selection”, MIT Press, Cambridge, MA.

Peer, E.S., van den Bergh, F., Engelbrecht, A. P.

2003, “Using Neighborhoods with Guaranteed

Convergence PSO”. In Proceedings of the IEEE

Swarm Intelligence Symposium, pp. 235-242, USA.

Pomeroy, P., 2003, “An Introduction to Particle

Swarm Optimization”,

http://www.adaptiveview.com/articles/ipsop1.html.

Rechenberg, I. 1994, ”Evolution Strategy”, In

Computational Intelligence: Imitating Life, J. M.

Zurada, R. J. Marks II, and C. Robinson, Eds.,

IEEE Press, Piscataway, NJ.

Schaffer, J. D., Morishima, A. 1987, “An adaptive

crossover distribution mechanism for genetic

algorithms”. In Proceeding of the Second

International Conference on Genetic Algorithms, J.

J. Grefenstette (Ed.),Lawrance Erlbaum Associates,

Hillsdale, NY, 36-40.

Shi, Y., and Eberhart, R. C. 1999, “Empirical study

of particle swarm optimization”. In Proceedings of

Congress on Evolutionary Computation, 1945-1950.

Piscataway, NJ: IEEE Service Center.

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 78

Shi, Y., and Eberhart, R. C. 1998, “Parameter

selection in particle swarm optimization”, In

Proceedings of the Annual Conference on

Evolutionary Computation.

Shi, Y. and Eberhart, R. C. 1998, “A modified

particle swarm optimizer”. In Proceedings of the

IEEE Congress on Evolutionary Computation

(CEC), Piscataway, NJ. pp. 69-73

Spears, W. M., De Jong, K. A. 1991, “On the

virtues of uniform crossover”. In Proceedings of

the Fourth International Conference on Genetic

Algorithms, Morgan Kaufmann Publisher, 230-236.

Syswerda, G. 1989, “Uniform crossover in genetic

algorithms”. In Proceedings of the third Conference

in Genetic Algorithms, J. Schaffer (ed.), Morgan

Kaufmann Publisher, Los Altos, CA, 2-9.

C.GROSAN et al.: OPTIMIZATION USING PARTICLE SWARMS AND EVOLUTIONARY ALGORITHMS

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print 79

Author Biographies

Crina Grosan currently works as an Assistant

Professor in the Computer Science Department of

Babes-Bolyai University, Cluj-Napoca, Romania.

Her main research area is in Evolutionary

Computation, with a focus on Evolutionary

Multiobjective Optimization and applications and

Genetic Programming. Crina Grosan authored/co-

authored over 50 papers in peer reviewed

international journals, proceedings of the

international conferences and book chapters. She is

co-author of two books in the field of computer

science. She proposed few Evolutionary techniques

for single and multiobjective optimization, a

genetic programming technique for solving

symbolic regression problems and so on. Dr.

Grosan is the co-editor for a book on Swarm

Intelligence for Data Mining, which will be

published by Springer Verlag, Germany. She is

member of the IEEE (CS), IEEE (NN) and ISGEG.

She received her PhD degree from Babes-Bolyai

University, Romania.

Ajith Abraham currently works as a Distinguished

Visiting Professor under the South Korean

Government’s Institute of Information Technology

Assessment (IITA) Professorship programme at

Chung-Ang University, Korea. He is also a visiting

researcher of Rovira i Virgili University, Spain and

an Adjunct Professor of Jinan University, China

and Dalian Maritime University, China. His

primary research interests are in computational

intelligence with a focus on using evolutionary

computation techniques for designing intelligent

paradigms. Application areas include several real

world knowledge-mining applications like

information security, bioinformatics, Web

intelligence, energy management, financial

modelling, weather analysis, fault monitoring, multi

criteria decision-making etc. He has authored/co-

authored over 200 research publications in peer

reviewed reputed journals, book chapters and

conference proceedings of which three have won

‘best paper’ awards.

He is the Editor of The International

Journal of Hybrid Intelligent Systems (IJHIS), IOS

Press, Netherlands; Journal of Information

Assurance and Security (JIAS), USA; International

Journal of Computational Intelligence Research

(IJCIR), Neurocomputing Journal, Elsevier Science,

The Netherlands; International Journal of Systems

Science (IJSS), Taylor & Francis, UK; Journal of

Universal Computer Science (J.UCS), Austria;

Journal of Information and Knowledge

Management, World Scientific, Singapore; Journal

of Digital and Information Management (JDIM),

Digital Information Research Foundation, India and

International Journal of Neural Parallel and

Scientific Computations (NPSC), USA. Since 2001,

he is actively involved in the Hybrid Intelligent

Systems (HIS) and the Intelligent Systems Design

and Applications (ISDA) series of annual

International conferences. He was also the General

Co-Chair of The Fourth IEEE International

Workshop on Soft Computing as Transdisciplinary

Science and Technology (WSTST05), Japan and

the Program Co-Chair of the Inaugural IEEE

Conference on Next Generation Web Services

Practices, Seoul, Korea. He received PhD degree

from Monash University, Australia. More

information at: http://ajith.softcomputing.net

Monica Nicoara is student of Faculty of

Mathematics and Computer Sciences, Babes-Bolyai

University, Cluj-Napoca, Romania. Her main

research areas are Particle Swarm Optimization,

Evolutionary Computation and Combinatorial

Optimization.

