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Abstract: Particle Swarm Optimization (PSO) technique proved its ability to deal with very complicated 

optimization and search problems. Several variants of the original algorithm have been proposed. This paper 

proposes a variant of the PSO technique named Independent Neighborhoods Particle Swarm Optimization 

(INPSO) dealing with sub-swarms for solving the well known geometrical place problems. Finding the 

geometrical place can be sometimes a hard task and in almost all situations the geometrical place consists of 

more than one single point. Taking all these into account, the INPSO algorithm is very appealing for solving this 

class of problems. The performance of the INPSO approach is compared with Geometrical Place Evolutionary 

Algorithms (GPEA). The main advantage of the INPSO technique is its speed of convergence (finding quick 

solutions). To enhance the performance of the INPSO approach, a hybrid algorithm combining INPSO and 

GPEA is also proposed in this paper. The developed hybrid combination is able to detect the geometrical place 

much faster even for difficult problems  for which the direct GPEA approach required more time and the INPSO 

(even with few sub-swarms) approach failed in finding all the geometrical place points (solutions). 

 

1. INTRODUCTION 

 

Many group-living vertebrates exhibit complex, and 

coordinated, spatio-temporal patterns, from the 

motion of fish and birds, to migrating herds of social 

ungulates and patterns of traffic flow in human 

crowds.  The common property of these apparently 

unrelated biological phenomena, is that of inter-

individual interaction, by which individuals can 

influence the behavior of other group members. 

Self-organization theory suggests that much of 

complex group behavior may be coordinated by 

relatively simple interactions among the members of 

the group. Following this theory, in 1995, Kennedy 

and Eberhart developed some algorithms that 

modeled the "flocking behavior" seen in many 

species of birds (Eberhart and Kennedy, 1995). 

Different from the evolution-motivated computation 

techniques, a relatively new evolutionary paradigm, 

called Particle Swarm Optimization (PSO) had been 

discovered through simplified social model 

simulation.  

 

Evolutionary Computation (EC) techniques use a 

population of potential solutions (points) of the 

search space. These solutions (initially random 

generated) are evolved using different specific 

operators which are inspired from biology. Through 

cooperation and competition among the potential 

solutions, these techniques often can find optima 

quickly when applied to complex optimization 

problems. Evolutionary computation includes 

Genetic algorithms (GA) [Goldberg, 1989], 

Evolution Strategies (ES) [Rechenberg, 1994], 

Genetic Programming (GP) [Koza, 1992] and 

Evolutionary Programming (EP) [Fogel, 1994].  

 

PSO shares many similarities with evolutionary 

computation techniques such as genetic algorithms. 

The system is initialized with a population of 

random solutions and searches for optima by 

updating generations. However, unlike GA, PSO has 

no evolution operators such as crossover and 

mutation. In PSO, the potential solutions, called 

particles, fly through the problem space by 

following the current optimum particles.  There are 

some similarities between PSO and Evolutionary 

Algorithms [Angeline, 1998]:  

 

• both techniques use a population (which is called 

swarm in the case of PSO) of solutions from the 

search space which are initially random 

generated; 

• do not require auxiliary knowledge of the 

problem; 

• solutions belonging to the same population 

interact with each other during the search 

process; 

• solutions are evolved (their quality is improved) 

using techniques inspired from the real world 

(swarm behavior in the case of Particle Swarm 

technique and ideas from human genetics in the 

case of Evolutionary Algorithms); 

• can provide more than one solution at the end of 

search process and the final choice is left to the 

user. 

 

Even then, there are still many differences between 

these two techniques. In what follow, we will apply 
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both techniques for solving a well known class of 

search problems: geometrical place problems. It is 

well known that in the case of these problems a set 

of points which accomplish a given condition (or a 

set of conditions) is searched. In many situations, the 

searched geometrical place consists in more than one 

point (solution). That's the main reason we think the 

evolutionary techniques (particularly Evolutionary 

Algorithms) and Particle Swarm are fit for this 

problem, mainly due to their ability to deal with a 

population of solutions in the same time.  

 

We propose a new PSO technique (INPSO) which is 

based on the basic PSO algorithm proposed by 

Eberhart and Kennedy in 1995 (Eberhart and 

Kennedy, 1995). Some related work with the 

existing PSO variants can be found in [Eberhart and 

Kennedy, 1995; Eberhart et al., 1996; Eberhart and 

Shi, 2001; Kennedy and Eberhart, 1995; Kennedy, 

1997a; Kennedy, 1997b; Kennedy, 1998a; Kennedy, 

1998b; Shi and Eberhart, 1998a; Shi and Eberhart, 

1998b; Shi and Eberhart, 1999].   

 

Geometrical Place problems have already been 

investigated using Evolutionary Algorithms (GPEA) 

(Grosan, 2004, Grosan et al., 2005a). The main 

scope of our paper is to perform a comparison 

between INPSO and GPEA and to exploit the 

weakness/strength of each of them. Finally, taking 

into account the results, we propose a hybrid 

algorithm combining INPSO and GPEA which 

seems to perform better in complicated situations 

than each of these techniques applied separately 

(Grosan et al., 2005b). The paper is structured as 

follows: Section 2 presents the fundamentals of PSO 

technique. Section 3 briefly describes the INPSO 

technique proposed in this paper. The general 

evolutionary algorithm is described in Section 4 and 

the proposed hybrid INPSO-GPEA technique is 

presented in Section 5. In Section 6 some 

experiments considering different test problems are 

performed. A set of conclusions and remarks are 

presented towards the end. 

 

2. PARTICLE SWARM OPTIMIZATION 

TECHNIQUE 

 

Like other evolutionary computation techniques, 

PSO is a population-based search algorithm and is 

initialized with a population of random solutions, 

called particles [Hu et al., 2004]. Unlike in the other 

evolutionary computation techniques, each particle 

in PSO is also associated with a velocity. Particles 

fly through the search space with velocities which 

are dynamically adjusted according to their 

historical behaviors. Therefore, the particles have 

the tendency to fly towards the better and better 

search area over the course of search process. The 

PSO was first designed to simulate birds seeking 

food which is defined as a 'cornfield vector' 

[Kennedy and Eberhart, 1995].  

 

Assume the following scenario: a group of birds are 

randomly searching food in an area. There is only 

one piece of food in the area being searched. The 

birds do not know where the food is. But they know 

how far the food is and their peers' positions. So 

what's the best strategy to find the food? An 

effective strategy is to follow the bird which is 

nearest to the food.  

 

PSO learns from the scenario and uses it to solve the 

optimization problems. In PSO, each single solution 

is like a 'bird' in the search space, which is called 

'particle'. All particles have fitness values which are 

evaluated by the fitness function to be optimized, 

and have velocities which direct the flying of the 

particles. (The particles fly through the problem 

space by following the particles with the best 

solutions so far). PSO is initialized with a group of 

random particles (solutions) and then searches for 

optima by updating each generation. 

 

Each individual is treated as a volume-less particle 

(a point) in the D-dimensional search space. The i
th 

particle is represented as Xi = (xi1, xi2,…, xiD). At 

each generation, each particle is updated by the 

following two 'best' values. The first one is the best 

previous location (the position giving the best fitness 

value) a particle has achieved so far. This value is 

called pBest. The pBest of the i
th

 particle is 

represented as Pi=( pi1, pi2,…, piD). At each iteration, 

the P vector of the particle with the best fitness in 

the neighborhood, designated l or g, and the P vector 

of the current particle are combined to adjust the 

velocity along each dimension, and that velocity is 

then used to compute a new position for the particle. 

The portion of the adjustment to the velocity 

influenced by the individual's previous best position 

(P) is considered the cognition component, and the 

portion influenced by the best in the neighborhood is 

the social component. With the addition of the 

inertia factor, ω, by Shi and Eberhart (Shi and 

Eberhart, 1998) (brought in for balancing the global 

and the local search), these formulas are: 

vid = ω * vid + η� * rand() * (pid - xid) + η2 * Rand() * 

(pgd - xid)     (a) 

xid = xid+vid      (b) 

where rand() and Rand() are two random numbers 

independently generated in the range [0,1] and η1 

and η2 are two learning factors which control the 

influence of the social and cognitive components. In 

(a), if the sum on the right side exceeds a constant 

value, then the velocity on that dimension is 

assigned to be ±Vmax. Thus, particles' velocities are 

clamped to the range [-Vmax, Vmax] which serves as a 

constraint to control the global exploration ability of 

particle swarm. Thus, the likelihood of particles 
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leaving the search space is reduced. Note that this 

not restrict the values of Xi to the range [-Vmax, Vmax]; 

it only limits the maximum distance that a particle 

will move during one iteration. The main PSO 

algorithm as described by Pomeroy [Pomeroy, 2003] 

is as follows: 

/* set up particles' next location */ 

 for each particle p do { 

  for d = 1 to dimensions do { 

    p.next[d] = random(...) 

    p.velocity[d] = random(deltaMin, deltaMax) 

  } 

  p.bestSoFar = initialFitness 

} 

 

/* set particles' neighbors */ 

for each particle p do { 

  for n = 1 to numberOfNeighbors do { 

    p.neighbor[n] = getNeighbor(p, n) 

  } 

} 

 

/* run Particle Swarm Optimizer */ 

while iterations <= maxIterations do { 

  /* Make the "next locations" current and then */  

  /* test their fitness. */  

  for each particle p do { 

    for d = 1 to dimensions do { 

      p.current[d] = p.next[d] 

    }  

    fitness = test(p) 

    if fitness > p.bestSoFar then do { 

      p.bestSoFar = fitness 

      for d = 1 to dimensions do { 

        p.best[d] = p.current[d] 

      } 

    } 

 

    if fitness = targetFitness then do { 

      ... /* e.g., write out solution and quit */ 

    } 

  } /* end of: for each particle p */ 

 

  for each particle p do { 

    n = getNeighborWithBestFitness(p) 

    for d = 1 to dimensions do { 

      iFactor = iWeight * random(iMin, iMax) 

      sFactor = sWeight * random(sMin, sMax) 

      pDelta[d] = p.best[d] - p.current[d] 

      nDelta[d] = n.best[d] - p.current[d] 

      delta = (iFactor * pDelta[d]) + (sFactor * 

nDelta[d]) 

      delta = p.velocity[d] + delta 

      p.velocity[d] = constrict(delta) 

      p.next[d] = p.current[d] + p.velocity[d] 

    } 

  } /* end of: for each particle p */ 

} /* end of: while iterations <= maxIterations */ 

end /* end of main program */ 

 

/* Return neighbor n of particle p */ 

function getNeighbor(p, n) { 

  ... 

  return neighborParticle 

} 

 

/* Return particle in p's neighborhood */  

/* with the best fitness */ 

function getNeighborWithBestFitness(p) { 

  ... 

  return neighborParticle 

} 

 

/* Limit the change in a particle's */ 

/* dimension value */ 

function constrict(delta) { 

  if delta < deltaMin then 

    return deltaMin 

  else 

  if delta > deltaMax then 

    return deltaMax 

  else 

    return delta 

} 

 

3. PSO ADAPTED FOR GEOMETRICAL 

PLACE PROBLEMS 

 

Since geometrical place problems usually suppose to 

find a set of points which accomplish a given 

condition, any evolutionary technique which deals 

with a population of solutions (a set of individuals) 

would be an ideal technique. The standard PSO 

algorithm uses a population of particles. In the 

search process, particles are supposed to follow the 

best particle from the population. This way, there is 

a probability that all particles will converge in the 

same point of the search space.  But in the case of 

the geometrical place problems, the search place 

consists of more than one point. Consequently, we 

need to adapt the PSO technique so as to obtain 

multiple different points at the end of the search 

process. The idea of using sub-swarms or 

neighborhoods seems to be ideal for our problem. 

This way, we can obtain the maximum number of 

solutions which is equal to the number of sub-

swarms assuming that all sub-swarms will converge 

to different points in the search space. The proposed 

PSO algorithm is similar to the classical ones which 

use neighborhoods [Brits et al., 2002; Peer et al., 

2003] but still there are some differences which are 

described below. 

 

We consider the PSO algorithm with neighborhoods, 

but not overlapping ones as usual. Thus, the particles 

in the swarm 'fly' in independent sub-swarms. It is 

just like dividing the swarm into multiple 

independent 'neighborhoods'. The dimension of each 

neighborhood (sub-swarms) is the same for all 

considered sub-swarms.  
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The reason for not choosing overlapping 

neighborhoods is that in the case of the studied 

problem (solving geometrical place problems) the 

solution consists of a set of points and is not only a 

single point. Instead of searching for one single 

point as the final solution it is required to search for 

a set of points having the same property but 

independent from one another. 

 

In the classical PSO, each solution will follow the 

best solution in the swarm or the best solution 

located in its neighborhood. This means, finally all 

solutions will converge to the same point (which is 

given by the position of the best particle in the 

swarm). But for the geometrical place problem we 

need to find a set of different solutions. 

 

By considering different sub-swarms, the number of 

solutions which can be obtained at the end of the 

search process might be at most equal to the number 

of sub-swarms (this in case each sub-swarm will 

converge to a different point). Taking into account 

all these considerations, we will consider small sub-

swarms (having usually few particles - 4 or 5) so 

that we have the chances to obtain, finally, a greater 

number of different points. The way in which these 

sub-swarms work is depicted in Figure 1. We 

consider 5 sub-swarms. Each sub-swarm contains 

the same number of particles (6 nos). The 

geometrical place is supposed to be the eclipse in the 

middle. Particles in each sub-swarm will follow the 

best particle found so far in their own sub-swarm 

only. 

 

The algorithm proposed is called Independent 

Neighborhoods Particle Swarm Optimization 

(INPSO). The main steps of the INPSO algorithm 

are described below: 

INPSO algorithm 

begin 
  for each particle p do 

  begin 

Initialize with random position in the 

problem space 

Initialize with random velocity in the 

problem space 

  endfor 

  while iteration ≤ max_iterations do 

  begin 
for each particle p do 

begin 
          Calculate fitness value 

          if the fitness value is better than its 

best fitness value in history  

                         then  

  begin 
                     Update pbest  

                                     if the fitness value attained a   

minimum criteria 

                      then 

                                           Stop particle p in the 

current pbest location 

                                        endif 

                                 end 

                             endif 

                 endfor 

                for each particle p do 

               begin 

                         Identify the particle in the  

neighborhood with the best fitness 

value so far as the lbest 

                          Assign its index to the variable l 

                           if particle p is not stopped  

                           then  

                                 begin  

                                       Calculate particle velocity 

according to equation (a) 

                                       Update particle position 

according to equation (b) 

                                  end 

                  endfor 

       end 

end. 
 

 

When a particle finds a feasible solution (its fitness 

value attains minimum) it is obvious there is no need 

to continue ‘flying’' and thus the particle can stop at 

that pBest location. But the particle will continue to 

share its experience with its still 'flying' neighbors 

(particles belonging to the same sub-swarm). 

 

 

4. EVOLUTIONARY ALGORITHMS FOR 

GEOMETRICAL PLACE PROBEMS 

 

Evolutionary Algorithms (EA) are stochastic search 

methods inspired from the metaphor of natural 

biological evolution. Evolutionary Algorithms were 

introduced in 1965 by John Holland [Holland, 1975]. 

These algorithms operate on a population of 

potential solutions applying the principle of survival 

of the fittest to produce better approximations to a 

solution. This population is initially randomly 

generated over the search space which is the 

definition domain. At each generation, operators 

borrowed from natural genetics such as selection, 

recombination, mutation, migration, inversion, 

reinsertion, etc. are applied to the individuals from 

the population. By applying genetic operators these 

individuals are evolved. Each individual from 

population is evaluated by using a quality (fitness) 

function. Using this quality the best individuals are 

selected at each generation. Many selection 

mechanisms have been implemented [Baker, 1985; 

Box, 1993; Goldberg 1989]. The selected 
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individuals are modified by applying crossover 

and/or mutation operator. Various forms of these 

operators can be found [Eshelman et al., 1989; 

Schaffer and Morishima, 1987; Spears and De Jong, 

1991; Syswerda 1989]. In this way new solutions are 

obtained. Some of these new solutions can be better 

than the existing solutions. There are many 

modalities to accept the new solutions (also called 

offspring) in population. Some algorithms accept the 

new solution only if this solution is better than his 

parent (or parents). The elitist algorithms accept the 

new obtained solution in population. Some surveys 

in Evolutionary Algorithms and their applications 

can be found in [Box, 1993; Davis, 1991; Goldberg, 

1989]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1. An example of 5 independent sub-swarms and each sub-swarm containing 6 particles. 
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FIGURE 2. Flow chart of an evolutionary algorithm 

 

Grosan [Grosan, 2004] proposed a simple 

evolutionary algorithm for dealing with geometrical 

place problems. This algorithm is called Geometrical 

Place Evolutionary Algorithms (GPEA). A real 

encoding of solutions is considered. Each individual 

is evaluated using an adequate fitness function. 

Binary selection is applied. A convex crossover 

operator [Goldberg, 1989] is applied over selected 

individuals. The best between parents and offspring 

enters the new population. Over this new obtained 

population mutation operator is applied. Individuals 

obtained after these steps will constitute the 

population of the next generation. These steps are 

repeated for a specified number of generations. 

GPEA is presented below. 

GPEA description 

begin 

         Set t = 0; 

         Randomly initialize the population P(t) of size 

popsize; 

         Repeat 

                 Evaluate population P(t); 

                 for i:= 0 to popsize do 

                 begin 

                         Select two parents from P(t); 

                         Apply crossover over selected 

parents and obtain an offspring; 

                         Mutate the best between parents and 

offspring and add it to population 

P’(t). 

                  end; 

                  t = t + 1; 

                P(t) = P’(t – 1); 

          Until t = Number of generations. 

end. 
 

5. HYBRID INPSO – GPEA APPROACH 

 

Our preliminary experiments indicated that the 

INPSO approach converges faster when compared to 

GPEA (less number of iterations). But, for some 

difficult problems we found that some sub-swarms 

of INPSO could not converge (even if the number of 

generations is increased drastically). GPEA always 

converges to the solution, but compared to INPSO it 

is time consuming. Taking these into account, we 

propose a hybrid of INPSO and GPEA. First, we 

will exploit INPSO’s ability to converge very fast 

and then, we will use GPEA’s advantage to always 

converge to the solution. After 100 generations of 

INPSO approach we will switch to GPEA (the 

solutions which failed earlier using INPSO is 

expected to converge using additional iterations of 

GPEA). GPEA chromosomes consist of the existing 

INPSO particles, with their current location. GPEA 

uses real representation of solutions. Gaussian 

Generate initial 
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population 
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termination 
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satisfied? 
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No 

Select best 

individuals  
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mutation and convex crossover are the only genetic 

operators used. 

 

6. EXPERIMENT SETUP AND RESULTS 

We performed 6 different experiments comparing 

INPSO performances with GPEA approach. For 

each problem considered in experiments we run each 

algorithm 20 times and we considered the worst 

results. INPSO and GPEA are applied for the same 

initial population. Experiment results are graphically 

illustrated in Figures 3-11. As we can see from the 

experiments results, INPSO converges faster when 

compared to GPEA (less number of iterations). But, 

for some difficult problems (Figures 8-11), it could 

be found that some sub-swarms could not converge 

(even if the number of generations are increased 

drastically). GPEA always converges to the solution, 

but compared to INPSO it is time consuming.  

 

The values of the main parameters used by INPSO 

and GPEA in experiments are presented in Table1. 

For all the considered problems, the performance of 

the hybrid INPSO-GPEA technique is presented in 

Figures 3-11. 

 

Value 
Parameter 

INPSO GPEA 

Population size 500 500 

Sub-swarms size   4 - 

ηx, ηy 1.49445 - 

Vmax 0.1 * Xmax - 

Inertia weight 0.5 + Rnd/2.0 - 

Sigma - 1 

Mutation probability - 0.5 

Crossover 

probability 

- 0.7 

 

Table 1. Parameters of INPSO and GPEA 

 

Both ηx, ηy are set to 1.49445 according to the work 

by Clerc [Clerc, 1999]. The obvious reason is it will 

make the search cover all surrounding regions which 

is centered at the pBest and lBest. A randomized 

inertia weight is used, namely it is set to 

[0.5+(Rnd/2.0)], which is selected in the spirit of 

Clerc's constriction factor [Eberhart and Shi, 2001]. 

Vmax is set to 0.1* Xmax. The value of Vmax is usually 

chosen to be k * Xmax, with 0.1 ≤ k ≤ 1.0 [Eberhart et 

al., 1996]. Each of the considered problems is 

described in the following sub-sections.   

 

6.1 Problem 1: Circle 

 

Geometrical place of the points M for which the 

distance (in absolute value) to a given point C is 

constant and equal to k. Geometrical place is the 

circle having as center the given point C and ray 

equal to k. Results obtained by INPSO, GPEA and 

the hybrid algorithms are depicted in Figure 3. 

Figure 3 (a) refers to INPSO, Figure 3 (b) refers to 

GPEA and Figure 3 (c) to the hybrid INPSO – 

GPEA approach. We denoted by N the number of 

generations.  
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N = 100 

 
N = 200 

 
N = 400 

 
N = 500 

 

(a) 

 
N = 100 

 
N = 500 

 
N = 750 

 
N= 1000 

 

(b) 

 

 
N = 100 

 
N = 200 

 
N = 300 

 
N = 375 

 

(c ) 

FIGURE 3. Circle (a) INPSO, (b) GPEA (c) Hybrid INPSO – GPEA 

 

As we can see from Figure 3 (a), INPSO particles 

converge (almost all of them) in 200 generations. 

Finally, after 500 generations all particles converged 

while GPEA needs 1000 generations for all 

individuals to converge. For the hybrid INPSO-

GPEA (first INPSO for 100 iterations and thereafter 

GPEA) approach, all the particles (individuals) 

converged after 375 generations. Number of 

particles that did not converge in 100 generations by 

applying INPSO is 8 (from a population). If the 

swarm size is 100 particles, then all of them 

converge in 100 generations. From a swarm of 200 
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individuals, 2 particles will fail to find the 

geometrical place. The number of particles which 

will not converge increases with the population size. 

This will be 4 for a swarm of 300 particles and 5 for 

400 particles respectively. We use a greater number 

of particles so that the geometrical place could be 

clearly visualized. 

 

6.2. Problem 2: Ellipse 

Geometrical place of the points M for which sum of 

distances to two given point F1 and F2 is constant 

and equal to a given number k. In this case, the 

geometrical place consists of the ellipse having as 

focuses points F1 and F2. Results obtained by 

INPSO, GPEA and hybrid INPSO – GPEA are 

depicted in Figure 4.  

 
N = 100 

 
N = 200 

 

(a) 

 
N = 100 

 
N = 1000 

 
N = 1200 

 
N= 1500 

(b) 

 
N = 100 

 
N = 200 

 

(c ) 

Figure 4. Ellipse (a) INPSO, (b) GPEA, (c) Hybrid INPSO – GPEA 
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N = 100 

 
N = 200 

 
N=300 

 

(a) 

 
N = 100 

 
N = 150 

 
N = 200 

 

(b) 

 
N = 100 

 
N = 150 

 
N = 200 

 

(c ) 

FIGURE 5. Hyperbola (a) INPSO, (b) GPEA, (c) Hybrid INPSO – GPEA

As depicted in Figure 4 (a) INPSO converged much 

faster when compared to GPEA. In about 100 

generations almost all particles converged. After 200 

generations all particles converged while GPEA 

required about 1200 generations for all the particles 

to converge. The hybrid INPSO–GPEA approach 

converged in a similar way as INPSO. Number of 

particles that did not converge within 100 

generations by applying INPSO is 7 (out from a 

population). If swarm size is 100 particles, then all 

of them converged in 100 generations. From a 

swarm of 200 individuals, only a single particle 

failed in finding the geometrical place. The number 

of particles that will not converge is 4 for a swarm of 

300 particles and 6 for 400 particles respectively.  

6.3. Problem 3: Hyperbola 

Geometrical place of the points M for which the 

difference (in absolute value) to two given points F1  

and F2 is constant and equal to a given number k. 

The geometrical place is the hyperbola having the 

foci with points F1 and F2 respectively. Results 

obtained by INPSO, GPEA and hybrid INPSO-

GPEA are presented in Figure 5. From Figure 5, it is 

evident that the GPEA converges faster than INPSO. 

It needs only 200 generations for GPEA to converge 

while for INPSO it required 300 generations. The 

hybrid INPSO–GPEA approach took 200 

generations to converge. Number of solutions that 

did not converge after 100 generations by applying 

INPSO is equal to 2.  

6.4. Problem 4: Parabola 

Geometrical place of the points M those are 

equidistant from a point F (the focus) and a line (the 

directrix). Results obtained  by INPSO, GPEA and 

hybrid INPSO – GPEA) are presented in Figure 6. 
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N = 100 

 
N = 150 

 
N = 200 

 

(a) 

 
N = 100 

 
N = 500 

 
N = 1000 

 
N= 1200 

 

(b) 

 

 
N = 100 

 
N = 150 

 
N = 200 

 

(c ) 

FIGURE 6. Parabola (a) INPSO, (b) GPEA, (c) Hybrid INPSO – GPEA 

 

As illustrated in Figure 6, GPEA converges very 

slowly. It needs about 1200 generations until all 

solutions are converge to the geometrical place. 

INPSO and the hybrid INPSO – GPEA algorithms 

converged within 200 generations. Number of 

particles that failed to converge in 100 generations 

by applying INPSO is 28 (from a population of 500 

individuals). For INPSO of size 100 particles, all the 

particles converged within 100 generations.  
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N = 100 

 

(a) 

 
N = 100 

 
N = 1000 

 
N = 1200 

 
N= 1500 

 

(b) 

 

 
N = 100 

 

(c ) 

FIGURE 7. Lines (a) INPSO, (b) GPEA, (c) Hybrid INPSO – GPEA

For a swarm of 200 individuals, 8 particles failed to 

find the geometrical place. The number of particles 

that did not converge is 12 for a swarm of 300 

particles and 24 for a swarm of 400 particles 

respectively.  

 

6.5. Problem 5: Lines 

Geometrical place of the points M which are 

equidistant from two given convergent straight lines.  
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N = 100 

 
N = 500 

 
N = 1000 

 
N = 1000 

 

(a) 

 
N = 100 

 
N = 500 

 
N = 750 

 
N= 1000 

 

(b) 

 

 
N = 100 

 
N = 200 

 
N = 300 

 
N=350 

 

(c ) 

 

FIGURE 8. Oval  of Cassiani (a = 100, c = 150) (a) INPSO, (b) GPEA, (c) Hybrid INPSO–GPEA 

 

The geometrical place consists of two straight lines 

which are the bisecting lines for all angles which 

these two lines (and their extensions) can form. 

Results obtained by INPSO, GPEA and hybrid 

INPSO – GPEA are depicted in Figure 7. As 

evident from Figure 7, INPSO has converged very 

fast (in about 100 generations) while GPEA took 

nearly 1500 generations. In this case, there is no 

need to hybridize INPSO and GPEA. 
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N = 100 

 
N=300 

 
N=700 

 
N = 1000 

 

(a) 

 
N=100 

 
N=500 

 
N = 700 

 
N= 1100 

 

(b) 

 
N=100 

 
N=200 

 
N = 300 

 
N = 325 

 

 (c) 

FIGURE 9. Oval of Cassiani (a = 150, c = 142) (a) INPSO, (b) GPEA, (c) Hybrid INPSO–GPEA 

 

6.6. Problem 6: The Oval of Cassiani 

Geometrical place of the points M for which the 

product of distances to two given points F1 (-c, 0) 

and F2(c, 0) is constant and equal to a constant a
2
.  

The geometrical place for this problem is called the 

oval of Cassiani. We can identify four different 

situations for different values of a and c. These four 

situations are: 

1) a < c; 

2) c < a < c 2 ; 

3) a > c 2 ; 

4) a = c. 

Each of these situations is analyzed in the following 

sub-sections. 
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N = 100 

 
N=300 

 
N=500 

 
N = 1000 

 

(a) 

 
N=100 

 
N=500 

 
N = 750 

 
N= 1000 

 

(b) 

 

 
N=100 

 
N=200 

 
N = 300 

 

 (c) 

 

FIGURE 10. Oval of Cassiani (a = 143, c = 100) (a) INPSO (b) GPEA (c) Hybrid INPSO–GPEA 

 

5.6.1 Case a < c 

We consider the following values: a = 100, c = 150. 

Results obtained by INPSO, GPEA and hybrid 

INPSO – GPEA are depicted in Figure 8. Figure 8 

illustrates the effectiveness of using the hybrid 

approach. Both INPSO and GPEA require more 

than 1000 generations to converge to the 

geometrical place. The hybrid approach will 

converge in 350 generations. Number of particles 

that failed to converge in 100 generations by 

applying INPSO is 190 (from a population of 500 

individuals). For a swarm of size 100 particles, 40 

particles did not converge in 100 generations. For a 

swarm of 200 individuals, 72 particles failed to find 

the geometrical place. The number of particles that 

did not converge is 121 for a swarm of 300 

particles and 161 for a swarm of 400 particles 

respectively.  
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N = 300 

 
N = 500 

 
N = 1000 

 

(a) 

 
N = 100 

 
N = 500 

 
N = 750 

 
N= 1000 

 

(b) 

 

 
N = 100 

 
N = 150 

 
N = 200 

 

(c ) 

FIGURE 11. Oval of Cassiani (a = c = 150) (a) INPSO, (b) GPEA (c) Hybrid INPSO – GPEA 

 

5.6.2 Case c < a < c 2  

 

We considered the values a = 150, c = 142. Results 

obtained by INPSO, GPEA and hybrid INPSO – 

GPEA are depicted in Figure 9. As evident from 

Figure 9, the hybrid INPSO – GPEA approach 

obtained the best results compared to INPSO 

(which converged in 1000 generations) and GPEA 

(which required 1100 generations to converge). 
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Number of particles that failed to converge in 100 

generations by applying INPSO is 157 (out of a 

population of 500 individuals). For a swarm of size 

100 particles, 25 particles did not converge in 100 

generations. For a swarm of 200 individuals, 90 

particles failed to find the geometrical place. The 

number of particles that will not converge is 125 for 

a swarm of 300 particles and 114 for a swarm of 

400 particles respectively. 

 

5.6.3 Case Case  a > c 2  

 

We used the values 143 for a and 100 for c. Results 

obtained by all three techniques are presented in 

Figure 10.

For this case, the hybrid approach converged much 

faster (only 300 generations) compared to INPSO 

and GPEA (both converged in about 1000 

generations). Number of particles that failed to 

converge in 100 generations by applying INPSO is 

191 (out of a population of 500 individuals). For a 

swarm of size 100 particles, 32 did not converge in 

100 generations. From a swarm of 200 individuals, 

70 particles failed to find the geometrical place. 

The number of particles that will not converge is 

125 for a swarm of 300 particles and 166 for a 

swarm of 400 particles respectively. 

 

5.6.4 Case a = c 

 

We considered the value of 150 for both a and c in 

this situation. The results obtained by INPSO, 

GPEA and hybrid INPSO – GPEA are depicted in 

Figure 11. Compared to INPSO and GPEA, the 

hybrid approach is much faster. As evident from 

Figure 11, INPSO and GPEA required 1000 

generations to converge. The hybrid approach 

converged in about 200 generations.  Number of 

particles that failed to converge in 100 generations 

by applying INPSO is 82 (out of a population of 

500 individuals). For a swarm of size 100 particles, 

18 particles did not converge in 100 generations. 

For a swarm of 200 individuals, 32 particles failed 

to find the geometrical place. The number of 

particles that did not converge is 46 for a swarm of 

300 particles and 67 for a swarm of 400 particles 

respectively.  

 

6. CONCLUSIONS 
 

Geometrical place problems are a well known class 

of mathematical problems. Even if there are 

situations when these problems are trivial, there are 

also situations when mathematicians spend several 

hours for detecting a real geometrical place for a 

given problem. We approached these problems by 

using two well known intelligent techniques 

namely evolutionary algorithms (GPEA) and a 

variant of particle swarm optimization which uses 

sub-swarms (INPSO). 

 

We performed several experiments and 

comparisons between these two techniques. As 

evident from comparisons results, evolutionary 

algorithms work very well for all situations. They 

are less susceptible to getting 'stuck' at local optima 

than particle swarm optimization techniques. But 

they tend to be computationally expensive and 

needs longer time to find all the solutions.  For 

most of the considered problems (except Oval of 

Cassiani), the proposed INPSO technique could 

obtain better results in a faster, cheaper way when 

compared with other methods.  For the Oval of 

Cassiani problem, INPSO failed to converge as 

expected.  

 

Further, we exploited the advantages of these two 

methods: INPSO is very fast but sometimes there 

can be particles which will never converge; GPEA 

is computationally slow, but always could assure 

convergence. Consequently, we combined these 

two techniques: by using the fast convergence 

property of INPSO and the capabilities of GPEA to 

locate all the solutions. In the hybrid approach, 

INPSO is run for 100 iterations and then GPEA is 

applied to the population obtained by INPSO. The 

proposed hybrid approach seems to work very well 

for all the problems considered especially for the 

Oval of Cassiani problem where the GPEA and 

INPSO approaches required more than 65% 

iterations when compared to the hybrid approach 

(INPSO-GPEA).  
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