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Lukáš Prokop, Stanislav Mišák
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Abstract—Fuzzy sets and fuzzy logic can be used for efficient
data mining, classification, and value prediction. We propose a
genetically evolved fuzzy predictor to estimate the output of a
Photovoltaic Power Plant. Photovoltaic Power Plants (PVPPs)
are classified as power energy sources with unstable supply of
electrical energy. It is necessary to back up power energy from
PVPPs for stable electric network operation. An optimal value
of back up power can be set with reliable prediction models
and significantly contribute to the robustness of the electric
network and therefore help in the building of intelligent power
grids.

Keywords-genetic programming; fuzzy; power output predic-
tion; intelligent power grid

I. INTRODUCTION

A power grid must be operated with balanced energy

levels. The electrical energy that is produced by energy

sources within the network must be at the same time

consumed by customers. The accumulation of reasonable

quantities of electrical energy is currently still technically

and financially too demanding, even though experimental

systems are installed at prototype energy storage facilities,

where research is underway to find advanced ways to

accumulate electrical energy in large quantities [1].

Thus, in the present time the energetic balance must be

still maintained. It is mostly achieved by the regulation

of the sources of electrical energy, since the consumption

is usually beyond grid operators control. The power grid

consists of power plants with stable production of electricity

such as coal, gas, and nuclear power plants. On the other

hand, it might contain power plants with unstable electrical

energy production whose output depends on meteorological

conditions at given time and location. An example of unsta-

ble energy sources are wind power plants and solar power

plants. The amount of the electrical energy produced by

such power plants changes with changing weather conditions

significantly.

The power grid operator has to maintain a reliable, safe

and efficient operation of the energetic network. In order

to achieve that, the operator must be able to predict how

much electrical energy will be produced by unstable power

sources. In a power grid rich in unstable energy sources,

a reliable prediction is needed in order to ensure that the

stable sources of electrical energy will be able to satisfy

the demand for electricity by all customers. Otherwise, the

power network might became unstable and unreliable. In

electrical networks with a plenty of unstable power sources,

it is necessary to keep stable electrical power sources as

a backup. To determine the volume of this backup it is

necessary to estimate the output of the unstable energy

sources such as wind power plants and PVPPs.

Fuzzy classifiers constitute a class of tools and systems

that exploit the fuzzy set theory to mine, label, and generally

process data. There are simple fuzzy classifiers as well as

complex rule-based fuzzy classification systems that usually

build and maintain sophisticated rule bases. The popularity

of fuzzy classifiers can be attributed among others to their

ability to perform soft classification, to assign multiple labels

to data samples, and to the ease of their interpretation.

Genetic programming is a nature inspired search and

optimization method that was designed specifically to evolve

symbolic tree like structures in an automated manner. As

such, it is a good tool to evolve symbolic expressions such

as the fuzzy predictor.

In this work, we genetically evolve a fuzzy predictor in-

spired by the area of information retrieval. The predictor was

first used for data classification in [2]–[5]. When compared

to more complex fuzzy classifier systems, it can be seen as

a sole fuzzy rule that maps data features onto a real value

from the range [0, 1]. The fuzzy classifier is in this study

enhanced by the ability to process data as an ordered series

of records and it is used to estimate the power output of a

PVPP. The usefulness of this approach is illustrated by an

experiment with a real world PVPP data.

II. FUZZY CLASSIFICATION SYSTEMS EVOLVED BY

EVOLUTIONARY ALGORITHMS

The design of fuzzy classifiers and fuzzy rule-based

systems has been successfully aided by the nature inspired

methods in the recent years. In this section we summarize

few examples of such an evolution or more generally nature

inspired fuzzy classifier design. For a comprehensive survey
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on the automated evolution of fuzzy classification tools see

e.g. [6].

Multi-objective evolutionary algorithms were used for

the evolution of linguistic fuzzy rule-based classification

systems in the work of Cordón et al. [7]. Another multi-

objective evolutionary approach to the evolution of fuzzy

rule-based systems was proposed by Ishibuchi and No-

jima [8]. They used a hybrid 2-stage approach that combined

an initial heuristic stage to select fuzzy rules and evolution-

ary stage to optimize and tune the system.

Wang et al. [9] used genetic algorithms to integrate fuzzy

rule sets and membership functions learned from various

information sources. In [10], Freischlad et al. used an

evolutionary algorithm to generate fuzzy rules for knowl-

edge representation. Zhou and Khotanzad [11] used genetic

algorithm to learn various parameters of fuzzy classification

system from a training data set.

The usage of another nature inspired method - the particle

swarm optimization - to fuzzy classification system design

was studied recently in [12].

III. FUZZY PREDICTOR

The proposed predictor is based on the extended Boolean

information retrieval (IR) model. The extended Boolean

IR uses the concepts of the fuzzy set theory and fuzzy

logic in the area of information retrieval [13], [14]. In

the framework of the fuzzy predictor, we use similar data

structures, basic concepts, and operations as in the fuzzy

IR and we apply them to general data processing (i.e.

classification, prediction, and so forth).

The data base used by the fuzzy predictor is a real valued

matrix. Each row of the matrix corresponds to a single data

record which is interpreted as a fuzzy set of features. Such

a general real valued matrix D with m rows (data records)

and n columns (data features) can be mapped to an IR index

that describes a collection of documents.

The fuzzy predictor has the form of a weighted symbolic

expression roughly corresponding to an extended Boolean

query in the fuzzy IR analogy. The predictor consists of

weighted feature names and weighted aggregation operators.

The evaluation of such an expression assigns a real value

from the range [0, 1] to each data record. Such a valuation

can be interpreted as an ordering or a fuzzy set over the data

records.

A. Fuzzy predictor structure

Fuzzy predictor is a symbolic expression that can be

parsed into a tree structure. The tree structure consists of

nodes and leafs (i.e. terminal nodes). In our fuzzy predictor,

we recognize three types of terminal nodes:

• feature node - which represents the name of a feature (a

search term in the IR analogy). It defines a requirement

on a particular feature in the currently processed data

record.

and:0.4

feature1:0.5 or:0.1

feature2[1]:0.3 and:0.2

[1]:0.1 [2]:0.3

Figure 1: Tree form of a fuzzy predictor

• past feature node - which defines a requirement on

certain feature in a previous data record. The index of

the previous data record (current - 1, current - 2 etc.)

is a parameter of the node.

• past output node - which puts a requirement on a

previous output of the predictor. The index of the

previous output (current - 1, current - 2 ) is a parameter

of the node.

The last two node types allow the fuzzy predictor to take

into account the order of the data samples, i.e. to see it

as a complex time series rather than a simple valuation of

unordered records in the data base. Consider the following

example of the fuzzy predictor:

feature1:0.5 and:0.4 (feature2[1]:0.3 or:0.1 ([1]:0.1

and:0.2 [2]:0.3))

In our inline syntax, the feature node is defined by feature

name and its weight (feature1:0.5), past feature node is

defined by feature name, index of previous record, and

weight (feature2[1]:0.3), and past output node is defined

by the index of previous output and weight ([1]:0.5). The

tree that corresponds to the example given above is shown

in Fig. 1.

The operator nodes supported currently by the fuzzy

predictor are and, or, and not node. Both nodes and leafs

are weighted to soften the criteria they represent.

B. Fuzzy predictor evaluation

The fuzzy predictor evaluation procedure is inspired by

the fuzzy IR in a similar manner as the data structures it

uses. The most important part of the predictor evaluation is

the matching of feature values in data records to predictor

feature weights. In the IR is the result of such a feature

value - feature weight matching called the retrieval status

value (RSV) and it evaluates how a document satisfies the

criteria represented by a single search criterion defined by

the terminal node.

Consider a to be the weight of feature f in the predictor

(i.e. the predictor contains a terminal node f:a) and F (d, f)
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to be the value of feature f in data record d ∈ D. The

terminal node represents a single criterion. To evaluate this

criterion the function g : [0, 1] × [0, 1] → [0, 1] will be

used. The value of g(F (d, f), a) is the actual RSV for data

sample d, feature f , and predictor feature weight a. The

key point for RSV evaluation is the interpretation of the

predictor feature weight a. The most commonly used IR

interpretations understand the predictor feature weight as an

importance weight, a threshold, or an ideal feature value

description [13], [14].

We are using the threshold interpretation of a and the

equation for RSV evaluation in this case is shown in (1) [13],

[14]. In (1), P (a) and Q(a) are coefficients used for tuning

the threshold curve. An example of P (a) and Q(a) could

be e.g. P (a) = 1+a

2
and Q(a) = 1−a

2

4
. For the threshold

interpretation, a node containing feature f with the weight a

is a request satisfied by data samples having F (d, f) equal

or greater to a. The data samples satisfying this condition

will be awarded by high RSV and contrariwise data records

having F (d, f) smaller than a will be awarded by small

RSV.

g(F (d, f), a) =

{
P (a)

F (d,f)
a

for F (d, f) < a

P (a) +Q(a)
F (d,f)−a

1−a
for F (d, f) ≥ a

(1)

The operators and, or, and not can be evaluated using fuzzy

set operations. Fuzzy set operations are extensions of crisp

set operations on fuzzy sets [15]. They are defined using the

characteristic functions of operated fuzzy sets [16]. In [15]

L. Zadeh defined basic methods for the complement, union,

and intersection of fuzzy sets but besides these standard

fuzzy set operations, whole classes of prescriptions for the

complements, intersections, and unions on fuzzy sets were

defined [17].

In this study, we use the standard t-norm (2) and t-conorm

(3) for the implementation of and and or operators and fuzzy

complement for the evaluation of the not operator (4).

t(x, y) = min(x, y) (2)

s(x, y) = max(x, y) (3)

c(x) = 1− x (4)

However, the use of other common t-norm and t-conorm

pairs is of course possible.

C. Summary

The fuzzy predictor presented in this work is a simple

version of a fuzzy classifier. In contrast to more complex

fuzzy rule-based systems that usually constitute traditional

fuzzy classifiers, it consists of a single expression that states

soft requirements on data records in terms of data features.

Moreover, conditions can be put on past feature values and

past output values and therefore allow the predictor to see

the data base as an ordered sequence of records similar to

a time series.

IV. GENETIC PROGRAMMING

The evolution of the fuzzy predictor for the PVPP power

output estimation utilizes genetic programming. In this sec-

tion, we provide brief introduction into the area of genetic

algorithms and genetic programming.

Genetic algorithms are a popular member of the wide

chapter of evolutionary algorithms. They are based on the

programmatic implementation of genetic evolution and they

emphasize selection and crossover as the most important

operations in the evolutionary optimization process [18],

[19].

Genetic programming (GP) is an extension to the pop-

ular nature inspired stochastical optimizer, the genetic al-

gorithms [18], [19]. Genetic algorithms perform an artifi-

cial (software) evolution of a population of chromosomes

representing potential solutions to an investigated problem

encoded into a suitable data structures, most often fixed

length strings of low cardinality alphabets (e.g. bit strings).

The evolution is performed by iterative application of genetic

operators modifying the chromosomes, i.e. the encoded

forms of problem solutions, in order to emulate the prin-

ciples of Darwinian evolution, the survival of fittest, and

Mendelian inheritance.

The GP extends the genetic algorithms by enabling work

with hierarchical, often tree-like, chromosomes with an un-

even and unlimited length [18], [20]. The GP was introduced

as a tool to evolve whole computer programs and represented

a step towards adaptable computers that could solve prob-

lems without being programmed explicitly [21]. This is an

important ability because solutions to most problems can be

formulated by the means of computer programs. Moreover,

the GP can be used to develop solutions in the field of

machine learning, symbolic processing, or any other domain

that can formulate its solutions by means of parseable

symbolic expression. GP allows the efficient evolution of

such symbolic expressions with well-defined syntax and

grammar. GP chromosomes take the form of hierarchical

variably-sized expressions, point-labeled structure trees. The

trees are constructed from nodes of two types, terminals and

functions.

The chromosomes are evaluated by the execution of in-

structions corresponding to tree nodes [21]. Terminal nodes

are evaluated directly (e.g. by reading an input variable)

and functions are evaluated after left-to-right depth-first

evaluation of their parameters.

Genetic operators are applied to the nodes in the tree-

shaped chromosomes. A crossover operator is implemented

as the mutual exchange of randomly selected sub-trees

of the parent chromosomes. Mutation has to modify the

chromosomes by pseudo-random arbitrary changes in order

to prevent premature convergence and broaden the coverage

of the fitness landscape. Mutation could be implemented as:

i) removal of a sub-tree at a randomly chosen node
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ii) replacement of a randomly chosen node by a newly

generated sub-tree

iii) replacement of node instruction by a compatible node

instruction (i.e. a terminal can be replaced by another

terminal, a function can be replaced by another function

of the same arity)

iv) a combination of the above

The GP facilitates an efficient evolution of symbolic

expressions, even whole computer programs. In this work,

we use the GP for automated fuzzy predictor learning.

A. GP for fuzzy predictor evolution

To use the GP for fuzzy predictor learning, we need to de-

fine the encoding, genetic operators, and the fitness function.

The encoding is straightforward because the fuzzy predictor

is in fact a tree (see Fig. 1). We create a random population

of such trees (candidate predictors) and apply the GP to

evolve the population. The generation of random predictors

is done with respect to the probabilities summarized in .

The implementation of the crossover operator is also

simple: for each two trees, we swap randomly selected

branches. Such an operation results in valid fuzzy predictors.

The mutation operator is more complex because it has to

reflect the domain of the problem and properties of each

node that should be mutated. The mutation types that were

implemented and their respective probabilities are shown

in table Ib.

Table I: Random query generation an mutation probabilities.

(a) Probabilities of generating random nodes.

Event Probability

Generate feature node 0.17
Generate past feature node 0.17
Generate past output node 0.17
Generate op. and 0.24
Generate op. or 0.24
Generate op. not 0.02

(b) Probabilities of mutation operations.

Event Probability

Mutate node weight 0.5
Insert or delete not node 0.1
Replace with another node or
delete not node

0.32

Replace with random branch 0.08

The goal of the fuzzy predictor evolution is to find such

a predictor that would describe the same fuzzy set of data

records as indicated in the training data base.

The similarity of two fuzzy sets can be defined as:

ρ(X|Y ) =

{
‖X∩Y ‖
‖Y ‖ ‖Y ‖ �= 0

1 ‖Y ‖ = 0
(5)

where ‖A‖ is the Σ−count, i.e. the sum of the values of

characteristic function for all members of the fuzzy set

A [22]:

‖A‖ =
∑
x∈A

μA(x) (6)

Precision P and recall R are two measures that can be

used to evaluate the effectiveness of an IR system and we

use them to determine the suitability of a candidate fuzzy

predictor. In the IR, precision corresponds to the probability

of retrieved document to be relevant and recall can be seen

as the probability of retrieving relevant document. We use

precision P and recall R to evaluate the similarity of two

fuzzy sets:

P = ρ(t(D)|p(D)) R = ρ(p(D)|t(D)) (7)

where t(D) stands for the target fuzzy set and p(D) for

the fuzzy set generated by the predictor f . For an easier

evaluation, measures combining precision and recall into one

scalar value were developed. The F-score F is among the

most used scalar combinations of P and R:

F =
(1 + β2)PR

β2P +R
(8)

We use the F-score F as a fitness function when evolving

the fuzzy predictor. A good fuzzy predictor that generates

fuzzy set of data records that is similar to the training fuzzy

set of records will yield high precision, recall, and F-score.

V. EXPERIMENT

We have used the fuzzy predictor for a PVPP output

estimation. We have recorded the power output of one czech

PVPP during the period of two weeks. Next, we have

gathered hourly estimates of solar radiation intensity in the

same location for the same period of time.

The input data for the prediction model were obtained

from the Czech Hydrometeorological Institute, which oper-

ates a weather prediction model ALADIN for the Czech Re-

public. ALADIN provides (among others) estimated values

of the intensity of solar radiation IR (Wm−2) with a time

step one hour and it is able to predict these values for up to

72 hours in the future. We have matched these predictions

to the output power of the PVPP. Both input and output data

was for the purpose of the prediction algorithm normalized

into the interval [0, 1].
The data was divided into two halves. The first half was

used for training, i.e. for the evolution of a fuzzy predictor

that would estimate the output of the PVPP based on the

predicted intensity of solar radiation in the area.

The second half was used to verify the fuzzy predictor.

We have used the evolved predictor to estimate the PVPP

output from the solar radiation intensity estimates obtained

from the ALADIN model and compared it to the real output

of the PVPP. The real and estimated output of the PVPP
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Figure 2: Estimated and real output of the PVPP

during the experiment is shown in Fig. 2. We can clearly

see that the predictor has learned the main trends in power

production and that the estimate was able to copy the real

power output of the facility quite well.

VI. CONCLUSIONS

In this paper, we have designed a fuzzy predictor to

estimate the power output of a PVPP. A real world ex-

periment was conducted and a predictor generated from a

data set containing one week of estimates of solar radiation

intensity and real power output of a PVPP was able to

estimate the output of the same PVPP from solar intensity

predictions in the following week. Accurate predictions of

the power output of PVPPs can be seen as a building block

of intelligent power grids. It shows that soft computing and

nature inspired algorithms can contribute to the creation of

smart electrical networks.

The experiment presented in this paper is indeed initial.

The period of one week is rather small for both, training

an evaluation of the predictor. Moreover, the training and

testing data base could be created in a more elaborate way.

For instance, the solar radiation intensity prediction exists

for every hour while the PVPP power output measurement

is available for every minute. A more precise data base

could yield more precise predictions. In our future work

we want to improve the experimental data set, perform the

experiments in a larger scale, compare our approach with

other classification and prediction techniques and last but

not least tune all the parameters of the algorithm used to

create the fuzzy predictor.
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fuzzy classifier for data mining - an information retrieval
approach,” in Computational Intelligence in Security for In-
formation Systems 2010 (. Herrero, E. Corchado, C. Redondo,
and . Alonso, eds.), vol. 85 of Advances in Intelligent and Soft
Computing, pp. 25–32, Springer Berlin / Heidelberg, 2010.
10.1007/978-3-642-16626-6-3.
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