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ABSTRACT: In this paper, a few novel data hiding techniques
are proposed. These techniques are improvements over the
classical LSB data-hiding technique and the Fibonacci LSB
data-hiding technique proposed by Battisti et al. [1]. The clas-
sical LSB technique is the simplest, but using this technique it
is possible to embed only in first few bit-planes, since image
quality becomes drastically distorted when embedding in
higher bit-planes. Battisti et al. [1] proposed an improvement
over this by using Fibonacci decomposition technique and
generating a different set of virtual bit-planes all together,
thereby increasing the number of bit-planes. In this paper,
first we mathematically model and generalize this particular
approach of virtual bit-plane generation. Then we propose
two novel embedding techniques, both of which are special-
cases of our generalized model. The first embedding scheme
is based on decomposition of a number (pixel-value) in sum
of prime numbers, while the second one is based on decom-
position in sum of natural numbers. Each of these particular
representations generates a different set of (virtual) bit-planes
altogether, suitable for embedding purposes. They not only
allow one to embed secret message in higher bit-planes but
also do it without much distortion, with a much better stego-
image quality, in a reliable and secured manner, guarantee-
ing efficient retrieval of secret message. A comparative per-
formance study between the classical Least Significant Bit
(LSB) method, the data hiding technique using Fibonacci-p-
Sequence decomposition and our proposed schemes has
been done. Theoretical analysis indicates that image quality
of the stego-image hidden by the technique using Fibonacci
decomposition improves against simple LSB substitution
method, while the same using the prime decomposition
method improves drastically against that using Fibonacci
decomposition technique, and finally the natural number de-
composition method is a further improvement against that
using prime decomposition technique. Also, optimality for the
last technique is proved. For both of our data hiding tech-
nigues, the experimental results show that, the stego image is
visually indistinguishable from the original cover image.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Information Hiding; 1.4.6
[Segmentation] Pixel classification; 1.4.8 SceneAnalysis

General Terms
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Introduction

Data hiding technique is a new kind of secret communication
technology. It has been a hot research topic in recent years,
and it is mainly used to convey messages secretly by
concealing the presence of communication. While cryptography
scrambles the message so that it cannot be understood,
steganography hides the data so that it cannot be observed.
The main objectives of the steganographic algorithms are to
provide confidentiality, data integrity and authentication.

Most steganographic techniques proceed in such a way that
the data which has to be hidden inside an image or any
other medium like audio, video etc., is broken down into
smaller pieces and they are inserted into appropriate
locations in the medium in order to hide them. The aim is to
make them un-perceivable and to leave no doubts in minds
of the hackers who ’step into’ media-files to uncover 'useful’
information from them. To achieve this goal the critical data
has to be hidden in such a way that there is no major
difference between the original image and the 'corrupted’
image. Only the authorized person knows about the presence
of data. The algorithms can make use of the various
properties of the image to embed the data without causing
easily detectable changes in them. Data embedding or water
marking algorithms ([3], [6], [7], [8], [14], [20]) necessarily
have to guarantee the following:
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» Presence of embedded data is not visible.

¢ Ordinary users of the document/image are not affected by
the watermark, i.e., a normal user does not see any ambi-
guity in the clarity of the document/image.

* The watermark can be made visible/retrievable by the cre-
ator (and possibly the authorized recipients) when needed;
this implies that only the creator has the mechanism to
capture the data embedded inside the document/image.

« The watermark is difficult for the other eavesdropper to com-
prehend and to extract them from the channels.

In this paper, we mainly discuss about using some new
decomposition methods in a classical Image Domain
Technique, namely LSB technique (Least Significant Bit coding,
[18], [19]), in order to make the technique more secure and
hence less predictable. We basically generate an entirely new
set of bit-planes and embed data bit in these bit planes, using
our novel decomposition techniques [40],[41].

For convenience of description, here, the LSB is called the 0"
bit, the second LSB is called the 1 bit, and so on. We call the
newly generated set of bit-planes 'virtual’, since we do not get
these bit-planes in classical binary decomposition of pixels.

Rest of the paper is organized as follows: Sections 2 and 3
describes the embedding technique in classical LSB and
Fibonacci decomposition technique with our modification.
Section 4 describes a generalized approach that we follow in
our novel data-hiding techniques using prime/natural number
decomposition. Section 5 describes the embedding technique
using the prime decomposition, while the experimental results
obtained using this technique are reported in Section 6. In
Section 7, we describe the other embedding technique, i.e.,
the one using the natural number decomposition, and the
experimental results obtained using this technique are
reported in Section 8. Finally, in Section 9 we draw our
conclusions.

2 The Classical LSB Technique - Data Hiding by Simple
LSB Substitution

Among many different data hiding techniques proposed to
embed secret message within images, the LSB data hiding
technique is one of the simplest methods for inserting data
into digital signals in noise free environments, which merely
embeds secret message-bits in a subset of the LSB planes
of the image. Probability of changing an LSB in one pixel is
not going to affect the probability of changing the LSB of the
adjacent or any other pixel in the image. Data hiding tools,
such as Steganos, StegoDos, HideBSeek etc are based on
the LSB replacement in the spatial domain[2]. But the LSB
technique has the following major disadvantages:

« It is more predictable and hence less secure, since there is
an obvious statistical difference between the modified and
unmodified part of the stego-image.

¢ Also, as soon as we go from LSB to MSB for selection of bit-
planes for our message embedding, the distortion in stego-
image is likely to increase exponentially, so it becomes
impossible (without noticeable distortion and with expo-
nentially increasing distance from cover-image and stego-
image) to use higher bit-planes for embedding without any
further processing.

The workarounds may be: Through the random LSB
replacement (in stead of sequential), secret messages can
be randomly scattered in stego-images, so the security can
be improved.

Also, using the approaches given by variable depth LSB
algorithm (Chen et al. [21]), or by the optimal substitution
process based on genetic algorithm and local pixel adjustment
(Wang et al. [4]), one is able to hide data to some extent in
higher bit-planes as well.

We propose two novel new data hiding schemes by increasing
the available number of bit-planes using new decomposition
techniques. Similar approach was given using Fibonacci-p-
sequence decomposition technique by Battisti et al.([1], [12]),
but we show the proposed decomposition techniques to be
more efficient in terms of generating more virtual bit-planes
and maintaining higher quality of stego-image after
embedding.

3 Generalized Fibonacci LSB Data Hiding Technique

This particular technique, proposed by Battisti et al. [1],
investigates a different bit-planes decomposition, based on
the Fibonacci-p-sequences, given by,

Fp(0)=Fp()=...= Fp(p) =1
Fp(n)=F,(n=10+Fy(n=p=1,Yn2p+1,npex @)

This technique basically uses Fibonacci-p-sequence
decomposition, rather than classical binary decomposition
(LSB technique) to obtain different set of bit-planes, embed
a secret message bit into a pixel if it passes the Zeckendorf
condition, then while extraction, follow the reverse
procedure.

We shall slightly modify the above technique, but before that
let us first generalize our approach, put forward a
mathematical model and then propose our new data-hiding
techniques as special-cases of the generalized model.

For the proposed data hiding techniques our aim will be

¢ To expand the set of bit-planes and obtain a new different
set of virtual bit-planes.

« To embed secret message in higher bit-planes of the cover-
image as well, maintaining high image quality, i.e., without
much distortion.

¢ To extract the secret message from the embedded cover-
image efficiently and without error.

4 A Generalized LSB Data Hiding Technique

If we have k-bit cover image, there are only k available bit-
planes where secret data can be embedded. Hence we try to
find a function f that increases the number of bit-planes from
k to n, n > k, by converting the k-bit 8-4-2-1 standard binary
pixel representation to some other binary number system
with different weights. We also have to ensure less distortion
in stego image with increasing bit-plane. As is obvious, in
case of classical binary decomposition, the mapping f is
identity mapping. But, our job is to find a non identity mapping
that satisfies our end. Figure-1 presents our generalized
model, while Figure-2 explains the process of embedding.

4.1 The Number System

We define a number system by defining two things:

* Base (radix) r (digits of the number system € {0,...,r — 1})
¢ Weight function W(.), where W(i) denotes the weight
corresponding to i"" digit (e.g., for 8-4-2-1 binary system,
W(0)=1W(1) =2 W(2)=4W(4) =8).
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Hence, the pair (r,W(.)), defines a number system
completely. Obviously, our decimal system can be denoted in
this notation as (10, 100)).

A number having representation dp_idp_s...didp in
number system (7, W (.)) will have the following value (in
decimal), D = S0V, W (i), di €{0,1,....r —1}.
This number system may have some redundancy if 3
more than one representation for the same value, e.g., the
same (decimal) value D may be represented as

dip_1dp_o...d1dy and ;€_1 ;€_2d/1 6, i.e.,
k— . k— .

D =5 diW (i) = Y5 diW (i) where

di,d; € {0,1,...,r — 1}. Here d; # d, for at least 2

different 7 s.

To eliminate this redundancy and to ensure uniqueness, we
should be able to represent one number uniquely in our
number system. To achieve this, we must develop some
technique, so that for number(s) having multiple (more than
one, non-unique) representation in our number system, we
can discard all representations but one. One way of doing
this may be: from the multiple representations choose the
one that has lexicographical highest (or lowest) value, discard
all others. We shall use this shortly in case of our prime
number system.

As shown in Figure-2, for classical binary number system
(8-4-2-1), we use the weight function W (.) defined
by, W()=200=2W:i—2= W(i) =2,
Vi € Z*J{0}, corresponding to ;t" bit-plane (LSB = (t"
bit), so that a k bit number (k bit-pixel value) py. is represented
as p;, = Z ~ b2t where bic € {0,1} - this is our
well known binary decomposition.

Now, our f converts this py to some virtual pixel representation
pln (in a different binary number system) with n (virtual) bit-
planes, obviously we need to have n > k to expand number
of bit-planes. But finding such f is equivalent to finding a new
weight function W (.), so that 1¥/ () denotes the weight of ¢/
(virtual) bit plane in our new binary number system,
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Vi € Z*J{0}. Mathematically, P, = Z?:_ol ;CW(z)
where b;c € {0,1} - this is our new decomposition, with
the obvious condition that (pk)(z’g(.)) = (P%)(&W(.))

Also, W(i) must have less abrupt changes with respect to i, (it bit
plane, virtual), than that in the case of 2/, in order to have less
distortion while embedding data in higher (virtual) bit planes. We
call these expanded set of bit planes as virtual bit planes, since
these were not available in the original cover image pixel data.

But, at the same time we must ensure the fact that the function f
that we use must be injective, i.e., invertible, unless otherwise
we shall not be able to extract the embedded message precisely.

4.2 The Number System using Fibonacci p-Sequence
Decomposition

Function f proposed by Battisti et al. [1] converts the pixel in
binary decomposition to pixel in Fibonacci decomposition
using generalized Fibonacci-p-sequence, where
corresponding weights are Fy(n), VneR, ie.,
W (.) = Fiby(.), i.e., the number system proposed by them
to model virtual bitplanes is (2, F),(.))-

Since this number system too has redundancy (we can easily
see it by applying pigeon-hole principle), for uniqueness and
to make the transformation invertible, Zeckendorf's theorem,
has been used.

4.2.1 Modification to ensure uniqueness

Instead of Zeckendorf’s theorem, we use our lexicographically
higher property. Hence, if a number has more than one
representation using Fibonacci-p-sequence decomposition,
only the one lexicographically highest will be valid. Using this
technique we prevent some redundancy also, since numbers
in the range [0, Z" Lp »(4)] can be represented using n-bit
Fibonacci-p- sequence decomposition. For an 8-bit image,
the set of all possible pixel-values in the range [0, 255] has
the corresponding classical Fibonacci (p = 1, Fibonacci-1-
sequence, Fibonacci series ( [10], [11], [13]) ) decomposition
as shown in Table-1. One may use this map to have a constant-
time Fibonacci decomposition from pixel values into 12 virtual
bit-planes.
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5. The Prime Decomposition Technique P(0) =1,
5.1 The Prime Number System and Prime Decomposition P(i)=p;, Vi € zZ7,

We define a new number system, and as before we denote it P = ith Prime,
as (2. P(.)), where the weight function P(.) is defined as,
(2. 2()) ’ (- P1=2,p2=3,p3 =09,...

po=1

N Fib Decomp N Fib Decomp N Fib Decomp N Fib Decomp

0 000000000000 64 000100010001 128 001010001000 192 010010100001
1 000000000001 65 000100010010 129 001010001001 193 010010100010
2 000000000010 66 000100010100 130 001010001010 194 010010100100
3 000000000100 67 000100010101 131 001010010000 195 010010100101
4 000000000101 68 000100100000 132 001010010001 196 010010101000
5 000000001000 69 000100100001 133 001010010010 197 010010101001
6 000000001001 70 000100100010 134 001010010100 198 010010101010
7 000000001010 71 000100100100 135 001010010101 199 010100000000
8 000000010000 72 000100100101 136 001010100000 200 010100000001
9 000000010001 73 000100101000 137 001010100001 201 010100000010
10 000000010010 74 000100101001 138 001010100010 202 010100000100
1 000000010100 75 000100101010 139 001010100100 203 010100000101
12 000000010101 76 000101000000 140 001010100101 204 010100001000
13 000000100000 77 000101000001 141 001010101000 205 010100001001
14 000000100001 78 000101000010 142 001010101001 206 010100001010
15 000000100010 79 000101000100 143 001010101010 207 010100010000
16 000000100100 80 000101000101 144 010000000000 208 010100010001
17 000000100101 81 000101001000 145 010000000001 209 010100010010
18 000000101000 82 000101001001 146 010000000010 210 010100010100
19 000000101001 83 000101001010 147 010000000100 211 010100010101
20 000000101010 84 000101010000 148 010000000101 212 010100100000
21 000001000000 85 000101010001 149 010000001000 213 010100100001
22 000001000001 86 000101010010 150 010000001001 214 010100100010
23 000001000010 87 000101010100 151 010000001010 215 010100100100
24 000001000100 88 000101010101 152 010000010000 216 010100100101
25 000001000101 89 001000000000 153 010000010001 217 010100101000
26 000001001000 90 001000000001 154 010000010010 218 010100101001
27 000001001001 91 001000000010 155 010000010100 219 010100101010
28 000001001010 92 001000000100 156 010000010101 220 010101000000
29 000001010000 93 001000000101 157 010000100000 221 010101000001
30 000001010001 94 001000001000 158 010000100001 222 010101000010
31 000001010010 95 001000001001 159 010000100010 223 010101000100
32 000001010100 96 001000001010 160 010000100100 224 010101000101
33 000001010101 97 001000010000 161 010000100101 225 010101001000
34 000010000000 98 001000010001 162 010000101000 226 010101001001
35 000010000001 99 001000010010 163 010000101001 227 010101001010
36 000010000010 100 001000010100 164 010000101010 228 010101010000
37 000010000100 101 001000010101 165 010001000000 229 010101010001
38 000010000101 102 001000100000 166 010001000001 230 010101010010
39 000010001000 103 001000100001 167 010001000010 231 010101010100
40 000010001001 104 001000100010 168 010001000100 232 010101010101
41 000010001010 105 001000100100 169 010001000101 233 100000000000
42 000010010000 106 001000100101 170 010001001000 234 100000000001
43 000010010001 107 001000101000 171 010001001001 235 100000000010
44 000010010010 108 001000101001 172 010001001010 236 100000000100
45 000010010100 109 001000101010 173 010001010000 237 100000000101
46 000010010101 110 001001000000 174 010001010001 238 100000001000
47 000010100000 11 001001000001 175 010001010010 239 100000001001
48 000010100001 112 001001000010 176 010001010100 240 100000001010
49 000010100010 113 001001000100 177 010001010101 241 100000010000
50 000010100100 114 001001000101 178 010010000000 242 100000010001
51 000010100101 115 001001001000 179 010010000001 243 100000010010
52 000010101000 116 001001001001 180 010010000010 244 100000010100
53 000010101001 117 001001001010 181 010010000100 245 100000010101
54 000010101010 118 001001010000 182 010010000101 246 100000100000
55 000100000000 119 001001010001 183 010010001000 247 100000100001
56 000100000001 120 001001010010 184 010010001001 248 100000100010
57 000100000010 121 001001010100 185 010010001010 249 100000100100
58 000100000100 122 001001010101 186 010010010000 250 100000100101
59 000100000101 123 001010000000 187 010010010001 251 100000101000
60 000100001000 124 001010000001 188 010010010010 252 100000101001
61 000100001001 125 001010000010 189 010010010100 253 100000101010
62 000100001010 126 001010000100 190 010010010101 254 100001000000
63 000100010000 127 001010000101 191 010010100000 255 100001000001

Table 1. Fibonacci (1-sequence) decomposition for 8-bit image yielding 12 virtual bit-planes

)
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Since the weight function here is composed of prime numbers,
we name this number system as prime number system and
the decomposition as prime decomposition.

As we have discussed earlier, if a number has more than one
representation in our number system, we always choose the
lexicographically highest of them as valid, e.g., '3’ has two
different representations in 3-bit prime number system,
namely, 100 and 011, since we have,

1.P(2)+0.P(1) + 0.P(0) =1.p2 + 0.p1 + 0.1=1.3+0.2+ 0.1=3
0.P(2)+1.P(1)+1.P(0)=0.p2 +1.p1 +1.1=03+12+1.1=3

100 being lexicographically (from left to right) higher than 011,
we choose 100 to be valid representation for 3 in our prime
number system and hence discard 011, which is no longer a
valid representation in our number system.

lexicographic (100, 01 1) = 100.

Hence, for our 3-bit example, the valid representations are:
000 <> 0,001 <> 1,010 <> 2,100 <> 3,101 <> 4,110 > 5,111 <> 6.

Numbers in the range [0, 6] can be decomposed using our 3
bit prime number system uniquely, with only the
representation 011 avoided.

3 = max

Now, let us proceed with this very simplified example to see
how the secret data bit is going to be embedded. We shall
embed a secret data bit into a (virtual) bit-plane by just simply
replacing the corresponding bit by our data bit, if we find that
after embedding, the resulting representation is a valid
representation in our number system, otherwise we do not
embed, just skip. This is only to guarantee the existence of
the inverse function and proper extraction of our secret
embedded message bit.

Again, let us elucidate by our previous 3-bit example. Let the
3-bit pixel within which we want to embed secret data be of
value 2, use prime decomposition to get 010, and we want to
embed in the LSB bit-plane, let our secret message bit to be
embedded be 1. So, we just replace the pixel LSB 0 by data bit
1 and immediately see that after embedding the pixel, it will
become 011, which is not a valid representation, hence we
skip this pixel without embedding our secret data bit.

Had we used this pixel value for embedding and after
embedding ended up with pixel value 011 (value 3), we might
get erroneous result while extraction of the secret bit. Because
during extraction decomposition of embedded pixel value 3
would wrongly give 100 instead of 011, and extraction of LSB
virtual bit-plane would wrongly give the embedded bit as
instead of its true value 1. Figure-3 explains this error pictorially.

Hence, embed secret data bit only to those pixels, where after
embedding, we get a valid representation in the number system.

5.2 Embedding algorithm

* First we find the set of all prime numbers that are required
to decompose a pixel value in a k-bit cover-image, i.e., we
need to find a number n, € N such that all possible pixel
values in the range [0, 2% —1] can be represented using first
n primes in our n-bit prime number system, so that we get
n, virtual bit-planes after decomposition. We can use Sieve
method, for example, to find primes. (To find the n is quite
easy, since we see, using Goldbach conjecture etc, that all
pixel values in the range [0, Z;iol pi] can be

represented in our m-bit prime number system, so all we

secret

message
bit
prime

. 01©= embed 3 01®= 3
decomposition

embeded secret message bit|

embedding: 2

i prime extract
extraction: 3t — 10@: @
decomposition

extracted secret message hit

011 : Not a Valid number in (3-bit) Prime Number System, hence
Skip embedding into 010, otherwise embedded bit may
not equal extracted bit: erroneous result

Figure 3. Error in not guaranteeing uniqueness of transformation

need to do is to find an n such that Zn_l pi > 28— 1,

1=

since the highest number that can be represented in n-bit
prime number system is 27":_01 Di

After finding the primes, we create a map of k-bit (classical
binary decomposition) to n-bit numbers (prime decompo-
sition), n, > k, marking all the valid representations (as
discussed in previous section) in our prime number sys-
tem. For an 8-bit image the set of all possible pixel-values
in the range [0, 255] has the corresponding prime decom-
position as shown in Table-2. As one may notice, the size of
the map to be stored has been increased in this case,
indicating a slightly greater space complexity.

 Next, for each pixel of the cover image, we choose a (virtual)
bit-plane, say pth bit-plane and embed the secret data bit
into that particular bit plane, by replacing the corresponding
bit by the data bit, if and only if we find that after embedding
the data bit, the resulting sequence is a valid representa-
tion in n-bit prime number system, i.e., exists in the map
otherwise discard that particular pixel for data hiding.

After embedding the secret message bit, we convert the
resultant sequence in prime number system back to its
value (in classical 8-4-2-1 binary number system) and we
get our stego-image. This reverse conversion is easy, since

we need to calculate Z?—_ol b;.p; only, where

b € {0,1},Vi € {0,n — 1}

5.3 Extraction algorithm

The extraction algorithm is exactly the reverse. From the
stego-image, we convert each pixel with embedded data bit
to its corresponding prime decomposition and from the pth
bit-plane extract the secret message bit. Combine all the
bits to get the secret message. Since, for efficient
implementation, we shall have a hash-map for this
conversion, the bit extraction is constant-time, so the secret
message extraction will be polynomial (linear) in the length
of the message embedded.

5.4 The performance analysis : Comparison between
classical Binary, Fibonacci and Prime Decomposition

In this section, we do a comparative study between the different
decompositions and its effect upon higher-bit-plane data-
hiding. We basically try to prove our following two claims, by
means of the following theorems from Number Theory [39]:

5.4.1 The Prime Number Theorem : A Polynomial tight
bound for Primes

By Tchebychef theorem, 0.92 < X=2(=) <1 105, vz > 2,
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N Prime Decomp N Prime Decomp N Prime Decomp N Prime Decomp

0 000000000000000 64 100000100000010 128 111000000010000 192 111110000100000
1 000000000000001 65 100000100000100 129 111000000010001 193 111110000100001
2 000000000000010 66 100001000000000 130 111000000010010 194 111110001000000
3 000000000000100 67 100001000000001 131 111000000010100 195 111110001000001
4 000000000000101 68 100001000000010 132 111000000100000 196 111110001000010
5 000000000001000 69 100001000000100 133 111000000100001 197 111110001000100
6 000000000001001 70 100001000000101 134 111000001000000 198 111110010000000
7 000000000010000 71 100001000001000 135 111000001000001 199 111110010000001
8 000000000010001 72 100010000000000 136 111000001000010 200 111110100000000
9 000000000010010 73 100010000000001 137 111000001000100 201 111110100000001
10 000000000010100 74 100100000000000 138 111000010000000 202 111110100000010
11 000000000100000 75 100100000000001 139 111000010000001 203 111110100000100
12 000000000100001 76 100100000000010 140 111000100000000 204 111111000000000
13 000000001000000 77 100100000000100 141 111000100000001 205 111111000000001
14 000000001000001 78 100100000000101 142 111000100000010 206 111111000000010
15 000000001000010 79 100100000001000 143 111000100000100 207 111111000000100
16 000000001000100 80 101000000000000 144 111001000000000 208 111111000000101
17 000000010000000 81 101000000000001 145 111001000000001 209 111111000001000
18 000000010000001 82 101000000000010 146 111001000000010 210 111111000001001
19 000000100000000 83 101000000000100 147 111001000000100 211 111111000010000
20 000000100000001 84 110000000000000 148 111001000000101 212 111111000010001
21 000000100000010 85 110000000000001 149 111001000001000 213 111111000010010
22 000000100000100 86 110000000000010 150 111010000000000 214 111111000010100
23 000001000000000 87 110000000000100 151 111010000000001 215 111111000100000
24 000001000000001 88 110000000000101 152 111100000000000 216 111111000100001
25 000001000000010 89 110000000001000 153 111100000000001 217 111111001000000
26 000001000000100 90 110000000001001 154 111100000000010 218 111111001000001
27 000001000000101 91 110000000010000 155 111100000000100 219 111111001000010
28 000001000001000 92 110000000010001 156 111100000000101 220 111111001000100
29 000010000000000 93 110000000010010 157 111100000001000 221 111111010000000
30 000010000000001 94 110000000010100 158 111100000001001 222 111111010000001
31 000100000000000 95 110000000100000 159 111100000010000 223 111111100000000
32 000100000000001 96 110000000100001 160 111100000010001 224 111111100000001
33 000100000000010 97 110000001000000 161 111100000010010 225 111111100000010
34 000100000000100 98 110000001000001 162 111100000010100 226 111111100000100
35 000100000000101 99 110000001000010 163 111100000100000 227 111111100000101
36 000100000001000 100 110000001000100 164 111100000100001 228 111111100001000
37 001000000000000 101 110000010000000 165 111100001000000 229 111111100001001
38 001000000000001 102 110000010000001 166 111100001000001 230 111111100010000
39 001000000000010 103 110000100000000 167 111100001000010 231 111111100010001
40 001000000000100 104 110000100000001 168 111100001000100 232 111111100010010
41 010000000000000 105 110000100000010 169 111100010000000 233 111111100010100
42 010000000000001 106 110000100000100 170 111100010000001 234 111111100100000
43 100000000000000 107 110001000000000 171 111100100000000 235 111111100100001
44 100000000000001 108 110001000000001 172 111100100000001 236 111111101000000
45 100000000000010 109 110001000000010 173 111100100000010 237 111111101000001
46 100000000000100 110 110001000000100 174 111100100000100 238 111111101000010
47 100000000000101 111 110001000000101 175 111101000000000 239 111111101000100
48 100000000001000 112 110001000001000 176 111101000000001 240 111111110000000
49 100000000001001 113 110010000000000 177 111101000000010 241 111111110000001
50 100000000010000 114 110010000000001 178 111101000000100 242 111111110000010
51 100000000010001 115 110100000000000 179 111101000000101 243 111111110000100
52 100000000010010 116 110100000000001 180 111101000001000 244 111111110000101
53 100000000010100 117 110100000000010 181 111110000000000 245 111111110001000
54 100000000100000 118 110100000000100 182 111110000000001 246 111111110001001
55 100000000100001 119 110100000000101 183 111110000000010 247 111111110010000
56 100000001000000 120 110100000001000 184 111110000000100 248 111111110010001
57 100000001000001 121 111000000000000 185 111110000000101 249 111111110010010
58 100000001000010 122 111000000000001 186 111110000001000 250 111111110010100
59 100000001000100 123 111000000000010 187 111110000001001 251 111111110100000
60 100000010000000 124 111000000000100 188 111110000010000 252 111111110100001
61 100000010000001 125 111000000000101 189 111110000010001 253 111111111000000
62 100000100000000 126 111000000001000 190 111110000010010 254 111111111000001
63 100000100000001 127 111000000001001 191 111110000010100 255 111111111000010

Table 2. Prime decomposition for 8-bit imageyielding 15 virtua bit-planes
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where 7 () denotes number of primes not exceeding , i.e., 5.4.2 Alower bound for the Fibonacci-p-Sequence

n(z) =10 (2-). This leads to famous Prime Number
w(n)

/t(my) ) = 1. From this one can

show [1] that, if p, be the pt" prime, 3L1, L2 € R,
such that L1< () <L2,Vn>2nez*, ie,

The Fibonacci-p-sequence, for p > 1, p € N, is given by,

theorem lim,, F,(0)=F,(1)=...=Fy(p) =1,

Fy(n)=F,(n—1)+Fp(n—p—1), Vn>p+1, n €N

lim,, s oo : lpTE 5) = 1 We prove the following lemmas and find
nin{n
Lemma-1: If the ratio of two consecutive numbers in Fibonacci
pn = 60(n.In(n)) (3)  P-sequence converges to limit cy, € RF, v, satisfies the
equation pp+1 _ op 1 =(, Vp € N
Proof:

. fn+p ) . <fn+p—1> . < fn )
ap=lim | —— )= lim [ —— ) =... = lim =...,
P n—o00 (fn+p—1 n—00 fn n—o0o fn—l

fn= '™ number in the Fibonacci — p Sequence, fntp = fntp—1 + fn-1

= a, = lim (M) — lim (f_">’

n—oo fn-l—p—l n—00 n—1

= ap =1+ lim

n—o0o

k=n+p—2
fk T fn
kzl:[_1 <fk+1> = o (fn—1>

Mrog 1
:>06p:1+H(a—) :>Oép:1+?
k=1 r r

p+1 P _
= a, —a,—1=0

Lemma-2: If (v}, be a +ve root of the equation ;-pt1 — P — 1 = (),wehavel < v, < 2,Vp € N.

Proof : We have,

abtt —ab —1=0 also, 2""' =2 —1=2"-1>0,Vpe Z*

=2 —1>a" —ak — 1= (2" — o) > ab(ay, — 2)

Also,

(4)

-1<0= aﬁ“ - —-1= ag(ap —1)> 0=, >1 (since positive) (5)

p

From (4), we immediately see the following:

sy > 0 according to our assumption, hence we can not
have ap = 2 (LHS & RHS both becomes 0, that does not
satisfy inequality (4)).

< If oy, > 2, we have LHS < () while RHS > () which again
does not satisfy inequality (4).

* Hence we have v, < 2, Vp € N

From (5), we have, ap > 1. Combining, we get,
1<a,<2 VpeRr

Lemma-3: If &, be a +ve root of the equation
aPtl — xP — 1 = (), where p € N, we have,

° O > Oyl

caf < (k+1).VkeR

Proof: We have,

Forp="Fk, oyt ' —af —1=0

From (6) we can argue,

* Qi F Q1 since neither of themis () or 1 (from lemma -2).

o If ), < (yg41, we have LHS of inequality (6) < 1, but RHS
>1, since both the terms in RHS will be greater than 1 (by

our assumption and by lemma-2), a contradiction.

* Hence, we must have

O > Oy, Vk € R (7)

Again, from (6) we have,

k
. _ 1 o
= (L) gy > 1 sinee | — > 1, from (7)
ak —1 k41

—1
Forp=k+1, affi —aiil—-1=0 = 2> qpqr > < o ) , (from lemma-2)
Q41 —
= affl (ks — 1) = af(ar - 1) © 1+ ay 8
k = Qg1 >
< ™ > _<ak+l_1> 2
= =\ — ) -ar+1
Q41 ak —1
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Now, let us induct on p to prove oh < p + 1.

Base case: for p =1, oy < 2, by lemma-2
Let us assume the inequality holds Vp <k = o) <p+1Vp <k
—1
Induction Step: for p =k + l,a’,:ﬂ = aj. (ak—) , by (6)
Qg1 — 1

ak——l

= ozﬁ} < (k+1). ( 1> , by induction hypothesis

Qg1 —

A —
= ol < (k4 1). <1+ ﬁ)

ap — o
= a’,jifll < (k+1)+ <_Ojk+1 _16411>

= ot < (k+1)+1, <fr0m (8), we have’% - 1>

= ot < (k+2)
=ab <(p+1),VpeNR

Lemma-4: The following inequalities always hold:
1
c(k+ 1) <kFT <. <45 <32 <2

o P p—1 3 2
ab<pt+tl=d" <p=.. .0 <i=a,<3=q<2

Proof: By Binomial Theorem, we have,

k—1 k—1 n
k—1)! 1 r
T B S Ui LI VIR I S § FPRL TS
(E+1) ;n!(/c—l—n)! +;n! 1105

<4141+ 4+ D)=k kT =k = (k4 1)F < ki1

k times

Hence,wehave,(k+1)% < = < ... <43 <31<2
Also, from (9) we have, oy, < (k + 1)%

Combining, we get,

1

1 1 1
ap < (F4+1)F <kFT <...<45 <32 <2
< (k+)=af ' <k...=a<b=al<4d=0a] <3= 0 <2

Lemma-5: The following inequality gives us the lower bound,
Fy(n) >a;™", Yn>p nen
where ), is the +ve root of the equation ;P+1 _ 2P _ 1 = ().

Proof: We induct on 7 to show the result.

F,(0) = F,(1) = ... = F,(p) = 1, (By definition of Fibonacci-p-Sequence).

©)

(10)

11)

(12)
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Base case :

n=p+1, F,(p+1)=F,(p)+ F,(0)=14+1=2> «,, (From Lemma-4)

n=p+2, Fp(p+2):Fp(p+1)+Fp(1
n=p+3, Fp(p+3):Fp(p+2)+Fp(2

~— ~—

2+ 1=3>q,” (From Lemma-4)
=3+1=4>a,’ (From Lemma-4)

n=p+(p+1), Fp+p+1)=FEp+p)+Fp) =@p+1)+1

Induction Step:

=p+2>a,™, (From Lemma-4)

Let's assume the above result is true Vm < n, m,n € X, form > 2p + 1 as well. Then we have,
—p—1 —2p—1 .
Fy(n)=F,(n—1)+ F,(n—p—1)>a, ™" +a, """ (hypothesis)
—2p—1 _ n=2p—1 _p+l _ _n—
= Fy(n)>a, . (1+ah) =a, " .ab™ = a7

= Fy(n) > a,™", Yn>p, neR

Hence, we have the following inequality,

Fp(n) > (O‘p)n_pv
o, € R,

1+5
a = +T‘/_ ~ 1.618034,

ay & 1.465575,
(s ~ 1.380278.
(q ~ 1.324718,
ap > pq, Vp e Z*

The sequence (¥, is decreasing in p.
The empirical results illustrated in Tables 3 and 4 also depict
the same:

5.4.3 Measures

As we know, Security, embedding distortion and embedding
rate can be used as schemes to evaluate the performance of
the data hiding schemes. The following are the popular
parameters,

» Entropy - Asteganographic system is perfectly secure when
the statistics of the cover-data and stego-data are identical,
which means that the relative entropy between the cover
data and the stego-data is zero. Entropy considers the in-
formation to be modeled as a probabilistic process that
can be measured in a manner that agrees with intuition
[38].The information theoretic approach to steganography
holds capacity of the system to be modeled as the ability to
transfer information ( [22], [23], [37]).

e Mean Squared Error and SNR - The (weighted) mean
squared error between the cover image and the stego-
image (embedding distortion) can be used as one of the
measures to assess the relative perceptibility of the em-
bedded text. Imperceptibility takes advantage of human
psycho visual redundancy, which is very difficult to quantify.
Mean square error (MSE) and Peak Signal to Noise Ratio

Fiby(n) ot~ Fiby(n) ot~
2 1618 3 2618
5 4236 8 6854
3 11090 2 1794
% 29034 5 46979
89 76013 7 12299
= 199.006 an 2199
610 521004 ®7 843002
1507 1364007 x84 2207010
2181 371018 6765 5778029
10046 9349051 77 15127.086
28657 24476.146 46368 39608247
75025 64079418 12139 103682.706
196418 167762.190 31781 271445002
514229 439207365 832040 710652.646
1346269 1149860461 2178309 1860513836
3504578 3010875477 5702887 4870891223
9227465 7881269.791 14930852 12752166014
24157817 20633443895 39085169 33385622.999
63045986 54019088074 102334155 87404745343
165580141 141423888869 267914296 228628723934
433494437 370252757977 701406733 599081716807
1134903170 969334854855 1836311903 1568417186629
2971215073 2537753086521 4807526976 4106171833.156
7778742049 6643927474721 12586269025 1075010852928
20365011074 1730407817.746 32951280099 28144152375.826
53316291173 4538208048829 86267571272 73682389315.076
139583862445 119220644109.601 225851433717 192903109060823
365435296162 | 312123875552.315 591286729879 505027182631.253
956722026041 | B17151378583699 || 1548008755920 |  1322179079633401
2504730781961 | 2139331207086010 || 4052739637881 | 3461511733907.302
6557470319842 | 5600845227000975 || 1061020085723 | 9062360514205.225
1716768017565 | 14663211490563.064 || 2777890035288 | 23725581307425.750

Table 3: a7 is a +ve Root of 42 — 4 —1=0, i.e,
a1 ~ 1.618034

(PSNR) can also be used as metrics to measure the
degree of imperceptibility:

M N
MSE = ZZ(fij — 9i;)*’MN

i=1 j=1

2
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Fib,(n) a,? Fib,(n) a,
2 1.466 3 2.148
4 3.148 6 4.613
9 6.761 13 9.909
19 14.523 28 21.284
41 31.193 60 45.716
88 67.000 129 98.194
189 143.910 277 210.910
406 309.104 595 453.013
872 663.923 1278 973.027
1873 1426.040 2745 2089.963
4023 3062.990 5896 4489.030
8641 6578.993 12664 9641.983
18560 14131.013 27201 20710.006
39865 30351.989 58425 44483.001
85626 65193.007 125491 95544.996
183916 140027.997 269542 205221.004
395033 300766.000 578949 440793.997
848491 646015.002 1243524 946781.002
1822473 | 1387574.999 2670964 | 2033590.001
3914488 | 2980371.002 5736961 | 4367946.001
8407925 | 6401536.002 | 12322413 | 9381907.004
18059374 | 13749853.006 || 26467299 | 20151389.008
38789712 | 29533296.012 || 56849086 | 43283149.019
83316385 | 63434538.027 || 122106097 | 92967834.041
178955183 | 136250983.061 || 262271568 | 199685521.092
384377665 | 292653355.137 || 563332848 | 428904338.205

Table 4: a2 is a +wve Root of 3 _ 2 _1 =0, i.e,
s ~ 1.465571

where M and N are the number of rows and number of
columns respectively of the cover image, fij is the pixel value
from the cover image, gi; is the pixel value from the stego-
image, and /, is the peak signal value of the cover image (for
8-bit images, I, = 255. In general, for k-bit grayscale image,
we have [, = ok _ 1). Signal to noise ratio quantifies the
imperceptibility, by regarding the image as the signal and the
message as the noise.

Here, we use a slightly different test-statistic, namely, Worst -
case-Mean-Square-Error (WMSE) and the corresponding
PSNR (per pixel) as our test statistics. We define WMSE as

follows:

If the secret data-bit is embedded in the ;t bitplane of
a pixel, the worst-case error-square-per-pixel will
be =WSE = |W(i)(1-0)* = (W(i))* corre-
sponding to when the corresponding bit in cover-image
toggles in stego-image, after embedding the secret data-
bit. For example, worst-case error-square-per-pixel for
embedding a secret data-bit in the bit plane in case of a
pixel in classical binary decomposition is = (2)% = 4,
where § € ZT [ J{0}. If the original k-bit grayscale
cover-image has size ¢ x h, we define,
WMSE =wxhx (W(i))*?=wxhxWSE

Here, we try to minimize this WMSE (hence WSE) and maxi-
mize the corresponding PSNR. We use the results (3) and

(12) to prove our following claims:

5.4.4 The proposed Prime Decomposition generates more
(virtual) bit-planes

Using Classical binary decomposition, for a k-bit cover image,
we get only k bit-planes per pixel, where we can embed our
secret data bit. From (3) and (12), we get,

s pn =0(n.1lnn)

+ n-1 +
. ElapeEK .Fp(n)>((xp) s (xp>zxp+1,VpeZ ;aq =1.618

Since n.Inn =o(ay), it directly implies that

Pn = 0(Fp(n)). The maximum (highest) number that can
be represented in n-bit number system using our prime
decomposition is Z?:_ol p;» and in case of n-bit number
system using Fibonacci p-sequence decomposition is
Z?:_()l F,(i). Now, it is easy to prove that,
Ing € R: ¥n > nowe have, S (1) > S0 pie

Hence, using same number of bits it is possible to represent
more numbers in case of the number system using Fibonacci-
p-sequence decomposition, than that in case of the number
system using prime decomposition, when number of bits is
greater than some threshold. This in turn implies that number
of virtual bit-planes generated in case of prime decomposition
will be eventually (after some n) more than the corresponding
number of virtual bit-planes generated by Fibonacci
p-Sequence decomposition.

From the bar-chart shown in Figure-6, we see, for instance, to
represent the pixel value 131, prime number system requires
at least 12 bits, while for its Fibonacci counterpart 10 bits
suffice. So, at the time of decomposition the same pixel value
will generate 12 virtual bit-planes in case of prime
decomposition and 10 for the later one, thereby increasing
the space for embedding.

5.4.5 Prime Decomposition gives less distortion in higher
bit-planes

Here, we assume the secret message length (in bits) is same
as image size, for evaluation of our test statistics. For message
with different length, the same can similarly be derived in a
straight-forward manner.

16384132768 165536

| o [
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binary. prime. fibonacel (p { ATE| oo
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Figure 4. Maximum number that can be represented in different
decomposition techniques
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In case of our Prime Decomposition, WMSE for embedding
secret message bit only in [t" (virtual) bitplane of each pixel
(after expressing a pixel in our prime number system, using
prime decomposition technique) = plz, because change in

[th bit plane of a pixel simply implies changing of the pixel

(WMSElthbitplane)

Prime—Decomposition

=w x h x p; = 0(%.log*(1)).

value by at most [ prime number.

From the above discussion and using equation (3), also
treating image-size as constant we can immediately conclude,
(for] > 0)

(13)

whereas WMSE in case of classical (traditional) binary (LSB) data hiding technique is given by,

(WMSElthbitplane)

The above result implies that the distortion in case of prime
decomposition is much less (since polynomial) than in case
of classical binary decomposition (in which case it is
exponential).

Now, let us calculate the WMSE for the embedding technique
using Fibonacci p-sequence decomposition. In this case,
WMSE for embedding secret message bit only in [t (virtual)

(WMSEIU" bitp[ane)

Similarly, for other values of p, one can easily derive (by
induction) some exponential lower-bounds, which are
definitely better than the exponential bound obtained in case
of classical binary decomposition, but still they are exponential

(WJ\ISEU’I bitpla.ne)

The sequence 04]2, is decreasing in p. Obviously, Fibonacci p-
sequence decomposition, despite being better than classical
binary decomposition, is still exponential and causes much
more distortion in the higher bit planes, than our prime
decomposition, in which case WMSE is polynomial (and not
exponential!) in nature. The plot shown in Figure-5 proves our
claim, it vindicates the polynomial nature of the weight function
in case of prime decomposition against the exponential nature
of classical binary and Fibonacci decomposition.

So from all above discussion, we conclude that Prime
Decomposition gives less distortion than its competitors
(namely classical binary and Fibonacci Decomposition) while
embedding secret message in higher bit-planes.

At a glance, results obtained for test-statistic WMSE, for our
k-bit cover image,

(WMSEl”‘ bitplane)

(WMSEl‘h bitplane)
(WMSElth bitplane)

Prime Decomposition

Classical— Binary—Decomposition

Fibonacci—1—Sequence Decomposition

Classical Binary Decomposition

Fibonacci—p Decomposition

= 0(4"). (14)

bit-plane of each pixel (after expressing it using Fibonacci-1-
sequence decomposition) = (Fp [))”, because change in
| "plane of a pixel simply implies changing of the pixel value
by at most | " Fibonacci number.

From inequality (12), we immediately get that in case of p =

1, i.e., for the Fibonacci-1-sequence decomposition, we
have,

= (F))> =6 ((2.618)1)

in nature, even if the base of the exponential lower bound will
decrease gradually with increasing p. So, we can generalize
the above result by the following,

> 6((a2)'
Fibonacci—p—Sequence Decomposition 4 ’
+ _ 1+ \/5
ap ERT, a1 = 5

a,2, > a?,H,Vp ezt

JOOJ] IS IS T IR0 NI N BND

bt plane (LSE = (44 bi) ——p

Figure 5. Weight functionsfor different decomposition techniques
= 0(4").
= 0(I*.log*(1)).
=0 ((ap)l) J

ap € RY,2.618 > ay, > apy1,Vp € ZT, with

Fibonacci—1 Decomposition — 0 ((2618)1) (15)
Also, results for our test statistic SN R,, st
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(2" —1)?
<<PSNRwOTSt)lth bitplane) Binary Decomposition - 10-10910 (21)2 i
2

<(P SN Ruyorst)en bitplane)

Prime Decomposition

<<PSNRIUOT5t>lth bitplane)

Fibonacci—p Decomposition

= 10.l0g10 <

1
= 10.log1g <(—
c. q

=)

a, € RT,2.618 > v, > 41, Vp € ZF, with

((PSNRworst)lth ln‘tplane)

6. Experimental Results for data-hiding technique
using Prime decomposition

We have, as input:

e Cover Image: 8-bit (256 color) gray level standard image of
Lena.

e Secret message length = cover image size, (message
string “sandipan” repeated multiple times to fill the cover
image size).

« The secret message bits are embedded into one (selected)
bit-plane per pixel only, the bitplane is indicated by the
variable p .

e The test message is hidden into the chosen bitplane using
different decomposition techniques, namely, the classical
(traditional) binary (LSB) decomposition, Fibonacci
1-sequence decomposition and Prime decomposition
separately and compared.

We get, as output:

* As was obvious from the above theoretical discussions,
our experiment supported the fact that was proved math-
ematically.

¢ As obvious, as the relative entropy between the cover-
image and the stego image tends to be more and more
positive (i.e., increases), we get more and more visible dis-
tortions in image rather than invisible watermark.

Fibonacci—1 Decomposition

k _1)2
= 10.10910 <u> . (16)

(2.618)!

« Figure-6 illustrates gray level [O. .. 255] vs. frequency plot of
the cover image and stego image in case of classical LSB
data-hiding technique. As seen from the figure, we get only
8 bit-planes and the frequency distribution (as shown in
histograms) and hence the probability mass function [27]
corresponding to gray level values changes abruptly,
resulting in an increasing relative entropy between cover-
image and stego image, implying visible distortions, as we
move towards higher bit-planes for embedding data bits.

e Figure-7 shows gray level [0 . . . 255] vs. frequency plot of
the cover image and stego image in case of data hiding
technique based on Fibonacci decomposition. This figure
shows that, we get 12 bit-planes and the probability mass
function corresponding to gray level values changes less
abruptly, resulting in a much less relative entropy between
cover image and stego image, implying less visible dis-
tortions, as we move towards higher bit-planes for em-
bedding data bits.

¢ Figure-8 again shows gray level [0 . .. 255] vs. frequency
plot of the cover image and stego image in case of data-
hiding technique based on Prime decomposition. This
figure shows that, we get 15-bit planes and the change of
frequency distribution (and hence probability mass func-
tion) corresponding to gray level values is least when com-
pared to the other two techniques, eventually resulting in
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Figure 6. Frequency distribution of pixel gray-levelsin different bit-planes before and after data-hiding in case of classical L SB technique
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a still less relative entropy between the cover image and
stego-image, implying least visible distortions, as we
move towards higher bitplanes for embedding data bits.

 Data-hiding technique using the prime decomposition has
a better performance than that of Fibonacci decomposition,
the later being more efficient than classical binary decom-
position, when judged in terms of embedding secret data
bit into higher bit-planes causing least distortion and thereby
having least chance of being detected, since one of princi-
pal ends of data-hiding is to go as long as possible without
being detected.

 Using classical binary decomposition, we get here only 8

steg image

Figure7. Frequency distribution of pixel gray-levelsin different bit-
planes before and after data-hiding in case Fibonacci (1-sequence)
decomposition technique

bit planes (since an 8-bitimage), using Fibonacci 1-sequence
decomposition we have 12 (virtual) bit planes, and using
prime decomposition we have still higher, namely 15 (virtual)
bit planes.

 As evident in Figure-9, distortion is highest in case of clas-
sical binary decomposition, less prominent in case of Fi-
bonacci, and least for prime.

This technique can be enhanced by embedding into more
than one (virtual) bit-plane, following the variable-depth data
hiding technique [21].

7 The Natural Number Decomposition Technique

For further improvement in the same line, we introduce a
new number system and use transformation into that in
order to get more (virtual) bit-planes, and also to have better
image quality after embedding data into higher (virtual) bit-
planes.

7.1 The Proposed Decomposition in Natural Numbers

We define yet another new number system, and as before we
denote it as (2, N (.)), where the weight function N (.) is defined
as, W(i)= N(i) =i+ 1, Vie Z+J{0}

Since the weight function here is composed of natural
numbers, we name this number system as natural number
system and the decomposition as natural number
decomposition.

:
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Figure8. Frequency distribution of pixel gray-levelsin different bit-planes before and after data-hiding in case of Prime decomposition technique
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This technique also involves a lot of redundancy. Proving this
is again very easy by using pigeonhole principle. Using n bits,
we can have 2" different binary combinations. But, as is
obvious and we shall prove shortly that using 7 bits, all (and
onlv) the numbers in the range [0, n(n + 1)/2] i.e., total
nintl) -+ 1 different numbers can be represented using our

-1
n > *

—1+ /2057 _ 44.35

natural number decomposition. Since bv induction one can
easily show, 27 > 2D 4 1 "y > 9 5 € R, we
conclude, by Pigeon hole principle that, at least 2
representations out of 2" binary representations will represent
the same value. Hence, we have redundancy.

As we need to make our transform one-to-one, what we do
is exactly the same that we did in case of prime
decomposition: if a number has more than one
representation in our number system, we always take the
lexicographically highest of them. (e.g., the number 3 has 2
different representations in 3-bit natural number system,
namely, 100 and 011, since we have, 1.3+0.2+0.1=3 and
0.3+1.2+1.1=3. But, since 100 is lexicographically (from left
to right) higher than 011, we choose 100 to be valid
representation for 3 in our natural number system and thus
discard 011, which is no longer a valid representation in
our number system. 3=max ... (100, 011) = 100 So, in our
3-bit example, the valid representations are: So, in our
3-bit example, the valid representations are:
000 > 0,001 <> 1,010 ¢ 2,100 ++ 3,101 <> 4,110 ¢ 5,111 <+ 6
Also, to avoid loss of message, we embed secret data bit
to only those pixels, where, after embedding we get a
valid representation in the number system. It is worth
noticing that, up-to 3-bits, the prime number system and
the natural number system are identical, after that they
are different.

7.2 Embedding algorithm

« First, we need to find a number i, € N such that all pos-
sible pixel values in the range [0, 2 -] can be represented
using first n natural numbers in our n-bit prime number
system, so that we get 1 virtual bit-planes after decomposi-
tion. To find the 1 is quite easy, since we see, and we shall
prove shortly that, in n-bit Natural Number System, all the

numbers in the range [0, n(n+1)/2] can be represented. So,
our job reduces to finding an 72 such that (1) > 2k 1,
i.e., solving the following quadratic in-equality

n4+n—2M42>0,

—1 A/ Qk+3 9
+ 5 + ., nezt

e After finding n, we create a map of k-bit (classical binary
decomposition) to n-bit numbers (natural number decom-
position), i > k , marking all the valid representations (as
discussed in previous section) in our natural number sys-
tem. For an 8-bit image the set of all possible pixel-values
in the range [0, 255] has the corresponding natural number
decomposition as shown in Table-5.

17)

=>n>

For k = 8, we get,

= 22.675 = n =23

1/28+3_{_9 B
P, 2 -

2

Hence, for an 8-bit image, we get 23 (virtual) bit-planes.

If we recapitulate our earlier result, as we see from the map
shown in Table-2, in case of prime decomposition, it yields
much less numbers of (virtual) bit planes (namely 15). Again
it is noteworthy that the space to store the map is still in-
creased. Although this computation of the map (one-time
computation for a fixed value of k) is slightly more expen-

2

sive and takes more space to store in case of our natural
number decomposition than in case of prime decomposi-
tion, the first outperforms the later one when compared in
terms of steganographic efficiency, i.e., in terms of embed-
ded image quality, security (since number of virtual bit-
planes will be more in case of the first) etc, as will be ex-
plained shortly.
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N Natural Decomp N Natural Decomp

0 00000000000000000000000 64 11001000000000000000000
1 00000000000000000000001 65 11010000000000000000000
2 00000000000000000000010 66 11100000000000000000000
3 00000000000000000000100 67 11100000000000000000001
4 00000000000000000001000 68 11100000000000000000010
5 00000000000000000010000 69 11100000000000000000100
6 00000000000000000100000 70 11100000000000000001000
7 00000000000000001000000 71 11100000000000000010000
8 00000000000000010000000 72 11100000000000000100000
9 00000000000000100000000 73 11100000000000001000000
10 00000000000001000000000 74 11100000000000010000000
n 00000000000010000000000 75 11100000000000100000000
12 00000000000100000000000 76 11100000000001000000000
13 00000000001000000000000 77 11100000000010000000000
14 00000000010000000000000 78 11100000000100000000000
15 00000000100000000000000 79 11100000001000000000000
16 00000001000000000000000 80 11100000010000000000000
17 00000010000000000000000 81 11100000100000000000000
18 00000100000000000000000 82 11100001000000000000000
19 00001000000000000000000 83 11100010000000000000000
20 00010000000000000000000 84 11100100000000000000000
21 00100000000000000000000 85 11101000000000000000000
22 01000000000000000000000 86 11110000000000000000000
23 10000000000000000000000 87 11110000000000000000001
24 10000000000000000000001 88 11110000000000000000010
25 10000000000000000000010 89 11110000000000000000100
26 10000000000000000000100 90 11110000000000000001000
27 10000000000000000001000 91 11110000000000000010000
28 10000000000000000010000 92 11110000000000000100000
29 10000000000000000100000 93 11110000000000001000000
30 10000000000000001000000 94 11110000000000010000000
31 10000000000000010000000 95 11110000000000100000000
32 10000000000000100000000 96 11110000000001000000000
33 10000000000001000000000 97 11110000000010000000000
34 10000000000010000000000 98 11110000000100000000000
35 10000000000100000000000 99 11110000001000000000000
36 10000000001000000000000 100 11110000010000000000000
37 10000000010000000000000 101 11110000100000000000000
38 10000000100000000000000 102 11110001000000000000000
39 10000001000000000000000 103 11110010000000000000000
40 10000010000000000000000 104 11110100000000000000000
41 10000100000000000000000 105 11111000000000000000000

42 10001000000000000000000 106 11111000000000000000001

43 10010000000000000000000 107 11111000000000000000010

44 10100000000000000000000 108 11111000000000000000100

45 11000000000000000000000 109 11111000000000000001000

46 11000000000000000000001 110 11111000000000000010000

47 11000000000000000000010 m 11111000000000000100000

48 11000000000000000000100 112 11111000000000001000000

49 11000000000000000001000 113 11111000000000010000000

50 11000000000000000010000 114 11111000000000100000000

51 11000000000000000100000 115 11111000000001000000000

52 11000000000000001000000 116 11111000000010000000000

53 11000000000000010000000 117 11111000000100000000000
54 11000000000000100000000 118 11111000001000000000000
55 11000000000001000000000 119 11111000010000000000000
56 11000000000010000000000 120 11111000100000000000000
57 11000000000100000000000 121 11111001000000000000000
58 11000000001000000000000 122 11111010000000000000000
59 11000000010000000000000 123 11111100000000000000000

60 11000000100000000000000 124 11111100000000000000001

61 11000001000000000000000 125 11111100000000000000010

62 11000010000000000000000 126 11111100000000000000100

63 11000100000000000000000 127 11111100000000000001000

Table 5. Natural Number decomposition yielding 23 virtual bit-planes
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¢ Next, for each pixel of the cover image, we choose a (vir-
tual) bit plane, say p" bit-plane and embed the secret data
bit into that particular bit plane, by replacing the corre-
sponding bit by the data bit, if and only if we find that after
embedding the data bit, the resulting sequence is a valid
representation in n-bit prime number system, i.e., exists
in the map otherwise discard that particular pixel for data
hiding.

e After embedding the secret message bit, we convert the
resultant sequence in prime number system back to its
value (in classical 8-4-2-1 binary number system) and we
get our stego-image. This reverse conversion is easy, since
we need to calculate Z?:_ol b;.(i 4+ 1) only,
b; € {0,1},Vi € {0,n — 1}.

7.3 Extracting algorithm

The extraction algorithm is exactly the reverse. From the
stego-image, we convert each pixel with embedded data bit
to its corresponding natural decomposition and from the p"
bit-plane extract the secret message bit. Combine all the
bits to get the secret message. Since, for efficient
implementation, we shall have a hash-map for this conversion,
the bit extraction is constant-time, so the secret message
extraction will be polynomial (linear) in the length of the
message embedded.

7.4 The performance analysis : Comparison
between Prime Decomposition and Natural Number
Decomposition

In this section, we do a comparative study between the different
decompositions and its effect upon higher-bit-plane data-
hiding. We basically try to prove our following claims,

7.4.1 In k-bit Natural Number System, all the numbers in
the range [0, k (k +1) /2] can be represented and only these
numbers can be represented

Proof by Induction on k:

Basis: k = 1, we can represent only 2snumbers, namely 0

and 1, but we have, k(k;l) = 1, i.e., all the numbers (and
only these numbers) in the range [0, 1], i.e., [0, @] can

be represented for k = 1.

Induction hypothesis: Let us assume the above result holds
Vk <n, néeRN

Now, let us prove the same for i = n + 1.

From induction hypothesis, we know, using bit Natural
Number System, all (and only) the numbers in the the range

[0, %] can be represented. Let us list all the valid
representations in n bit,

0= b(),nflbo’nfg . b071b070 = (0000...00
1= bl,n—lbl,n—Q . b1’1b1’0 = 0000...01

n(n+1)/2 = bun1)/20-10n(n41)/20—2 - - - Dn(n+1)/2.10n(n41) /2.0 = 111111

Now, for (n + 1) bit Natural Number System, we have the
weight corresponding to the nt" significant Bit (MSB),

Wi(n)=n+1

So when the MSB is 0, we have all the numbers in the range
[O n(n-i—l)]
2

ObO,nf 1 bO,an
Obl,n—lbl,n—2

0bn(n+1)/2,n—1

and when the MSB is 1, we get a new set of "(”2“) +1
numbers

n—+1+0,

n+1+1,

n+1+2,

1 :
n+ 1+ 5

i.e., all the (consecutive) numbers in the range

[n + 17 (n+1)2(n+2)].

1bO,nflbO,an
lbl,n—lbl,n—Q

1bn(n+1)/2,n—1

So, we get all the numbers in the range

[O, @] U[” + 1’ (n+1)2(n+2)] _ [O, (n+1)2(n+2)]

Also, the maximum number that can be represented (all 1's)
using (n+1) bit Natural Number System.
=+ 1)+ @)+ -+ + () +(2) + (1) = gt
and minimum number that can be represented (all 0's) is O .
Hence, only the numbers in this range can be represented.
Hence, we proved for k = n, 4+ 1 also. = VL € N the

above result holds.

7.4.2 The proposed Natural Number Decomposition
generates more (virtual) bit-planes

Using Classical binary decomposition, for a k-bit cover image,
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we get only k bit-planes per pixel, where we can embed our
secret data bit. From equation (3), we get, p,, = 0 (n.In(n))
Since n 4+ 1 = o (n.In(n)), the weight corresponding to the
nth bit in our number system using natural number
decomposition eventually becomes much higher than the
weight corresponding to the nt" bit in the number system using
prime decomposition. In n-bit Prime Number System, the
numbers in the the range [0, Z?:_l pi] can be represented,
while in our n-bit Natural Number System, the numbers in the

—1 . . 1
range [0, 755 (i 4 1) = [0, 1y i] = [0, 257 can
be represented. Now, it is easy to prove that
Ing € N : Vn > ng, we have, Ziig_l pi > w

Hence, using same number of bits, it is eventually possible to
represent more numbers in case of the number system using
prime decomposition, than that in case of the number system
using natural number decomposition. This in turn implies

that number of virtual bit planes generated in case of natural
number decomposition will be eventually more than the
corresponding number of virtual bit planes generated by prime
decomposition.

From The bar-chart shown in Figure-10, we see that, in order
to represent the pixel value 92, Natural number system
requires at least 14 bits, while for Prime number system 10
bits suffice. So, at the time of decomposition the same pixel
value will generate 14 virtual bit-planes in case of natural
number decomposition and 10 for the prime, thereby
increasing the space for embedding.

7.4.3 Natural Number Decomposition gives less distortion
in higher bit-planes

Here we assume the secret message length (in bits) is same
as image size, for evaluation of our test statistics. For message
with different length, the same can similarly be derived in a
straight-forward manner.
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Figure 10. Maximum number that can be represented in prime and natural number decomposition techniques
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In case of Prime Decomposition technique, WMSE for
embedding secret message bit only in [t" (virtual) bit-plane
of each pixel (after expressing a pixel in our prime number
system, using prime decomposition technique) = plz,

(VV]\'4S‘E1”L bitplane)

Prime Decomposition

In case of our Natural Decomposition, WMSE for embedding
secret message hit only in [t (virtual) bit-plane of each pixel
(after expressing a pixel in our natural number system, using

(WMSEZM bitplane)

since (I + 1) = o(I*.log?(l)), eventually we have,
(WMSEl”‘ bitplane)

Natural Decomposition

The above result implies that the distortion in case of natural
number decomposition is much less than that in case of
prime decomposition. The plot shown in Figure-11 buttresses
our claim, it compares the nature of the weight function in
case of prime decomposition against that of the natural
number decomposition.

(WMSEl”‘ bitplane)
(‘/I/v‘]\4S'E‘l“Z bitplane)
(WMSElth bitplane)

Natural Number Decomposition

Also, results for our test-statistic PSN R

worst?

((PSNRworst)lth bitpla’n&)
((PSNRworst)lih bitplane)

((PSNRworst)lth bitplanE)

From equations (18) and (19), we see that, WMSE gradually
decreased from Binary to Prime and then from Prime to Natural
decomposition techniques (minimized in case of Natural
number decomposition), ensuring lesser probability of

Natural Number Decomposition

Classical Binary Decomposition

Prime Decomposition

Classical Binary Decomposition

Prime Decomposition

Natural Number Decomposition

different decomposition techniques

because change in [t* bit plane of a pixel simply implies
changing of the pixel value by at most the [t prime number.
From above, (treating image-size as constant) we can
immediately conclude, from equation (3), for [ > 0

=wxhxpl= 9(521092([))

natural number decomposition technique) = (I + 1)2. From
above, (treating image-size as constant again) we can
immediately conclude,

= (1 +1)? = 0().

< (WMSElth bitplane)

Prime Decomposition

So, from all above discussion, we conclude that Natural
Number Decomposition gives less distortion than Prime
Decomposition technique, while embedding secret message
in higher bit-planes.

At a glance, results obtained for test-statistic WMSE, in case
of our k-bit cover image,

(4").
= 0(1%.log*(1)).

=(I+1)” =60, -
= 10.log1o (%) .
) (2" —1)?
=10.log1o (W) '
) 2k —1)?
= 10.log1o (W) ' "

distortion, while PSNR gradually increased along the same
direction (maximized in case of Natural number
decomposition), implying more impercibility in message
hiding.
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7.4.4 Natural Number Decomposition is Optimal

This particular decomposition technique is optimal in the
sense that it generates maximum number of (virtual) bit-
planes and also least distortion while embedding in higher
bit-planes, when the weight function is strictly monotonically
increasing. Since, among all monotonic strictly increasing
sequences of positive integers, natural number sequence is
the tightest, all others are subsequences of the natural number
sequence. Our generalized model indicates that the optimality
of our technique depends on which number system we
choose, or more precisely, which weight function we define. .
Since weight function W : Z+ (J{0} — Z* (Since we are going
to represent pixel-values, that are nothing but non-negative
integers, the co-domain of our weight function is set of non-
negative integers. Also, weight function is assumed to be
one-one, otherwise there will be too much redundancy) is
optimized when it is defined as W (i) =i + 1, Vi € Z* {0},
i.e., in case of natural number decomposition.

Since we have, the weight function W : z*+ (J{0} — Z*, that
assigns a bit-plane (index) an integral weight, if we assume
that weight corresponding to a bit-plane is unique and the weight
is monotonically increasing, one of the simplest but yet optimal
way to construct such an weight function is to assign
consecutive natural number values to the weights
corresponding to each bit-plane, i.e.,
W(i)=i+1,Yi € z*J{0} (We defined W (i) =17+ 1
instead of W (i) = , since we want all-zero representation for
the value (), in this particular number system). Now, this
particular decomposition in virtual bit-planes and embedding
technique gives us optimal result. We get optimal performance
of any data-hiding technique by minimizing our test-statistic
WMSE. For embedding data in [th virtual bit-plane, we have
(WMSE)th pitprane = (W(1))?, so minimizing WMSE implies
minimizing the weight function W (.) , but having our weight
function allowed to assume integral values only, and also
assuming the values assigned by W are unique (W is injective,
we discard the un-interesting case when weight-values
corresponding to more than one bit-planes are equal), we can
without loss of generality assume to be monotonically increasing
But, according to the above condition imposed on W, we see that
such strictly increasing W assigning minimum integral weight-
values to different bit planes must be linear in bit-plane index.

Put it in another way, for n-bit number system, we need n,
different weights that are to be assigned to weight-values
corresponding to 1 bit-planes. But, the assigning must also
guarantee that these weight values are minimum possible.
Such n different positive integral values must be smallest 1.
consecutive natural numbers, i.e., 1,2, 3, ..., n. But, our weight
function W (i) =i +1, Vi € Zt {0} merely gives these
values as weights only, hence this technique is optimal.

Using classical binary decomposition, we get /£ bit planes only
corresponding to a k bit image pixel value, but in case of natural
number decomposition, we get, n-bit pixels, where 1, satisfies,

nP4n—21412>0

—14 V23 49 ¥
=nz———, nez (20)
=n :6(2%)

8. Experimental Results for Natural Number
decomposition technique

We have, again, as input:
» Cover Image: 8-bit (256 color) gray-level standard image of
Lena.

e Secret message length = cover image size, (message
string “sandipan” repeated multiple times to fill the cover
image size).

* The secret message bits are embedded into one (selected)
bit-plane per pixel only, the bitplane is indicated by the vari-
able p.

» The test message is hidden ( [26]) into the chosen bit-plane
using different decomposition techniques, namely, the clas-
sical (traditional) binary (LSB) decomposition,
Fibonacci 1-sequence decomposition and Prime decom-
position separately and compared.

We get, as output:

* As was obvious from the above theoretical discussions,
our experiment supported the fact that was proved math-
ematically, i.e., we got more (virtual) bit-planes and less
distortion after embedding secret message into the bit-
planes in case of Natural and Prime decomposition tech-
nigue than in case of Fibonacci technique and classical
binary LSB data hiding technique. We could also capture
the hidden message from the stego-image successfully
useing our decoding technique.

 As obvious, as the relative entropy between the cover-image
and the stego image tends to be more and more positive
(i.e., increases), we get more and more visible distortions in
image rather than invisible watermark.

« As recapitulation of our earlier experimental result, Figure-8
shows gray level (0 . . . 255) vs. frequency plot of the cover
image and stego-image in case of data-hiding technique
based on Prime decomposition. This figure shows that, we
get 15 bit-planes and the change of frequency distribution
(and hence probability mass function) corresponding to
graylevel values is least when compared to the other two
techniques, eventually resulting in a still less relative en-
tropy between the cover-image and stego-image, implying
least visible distortions, as we move towards higher bit-
planes for embedding data bits.

e Figure-12 shows gray level (0. .. 255) vs. frequency
plot of the cover image and stego image in case of
data-hiding technique based on Natural Number de-
composition. We get 23 bit-planes and the change of
frequency distribution (and hence probability mass
function) corresponding to gray level values is least
when compared to the other two techniques, eventu-
ally resulting in a still less relative entropy between
the cover-image and stego-image, implying least vis-
ible distortions, as we move towards higher bit-planes
for embedding data bits.

« Data-hiding technique using the natural number decompo-
sition has a better performance than that of prime decom-
position, the later being more efficient than classical binary
decomposition, when judged in terms of embedding se-
cret data bit into higher bit-planes causing least distortion
and thereby having least chance of being detected, since
one of principle ends of data-hiding is to go as long as
possible without being detected.

» Using classical binary decomposition, we get here only 8
bit planes (since an bit image), using Fibonacci 1-sequence
decomposition we have 12 (virtual) bit-planes, and using
prime decomposition we have 15 (virtual) bit-planes, but
using natural decomposition, we have the highest, namely,
23 (virtual) bit planes.

« As vindicated in the figures 8 and 9, distortion is much less
for natural decomposition, than that in case of prime. This
technique can also be enhanced by embedding into more
than one (virtual) bit-plane, following the variable-depth data-
hiding technique [9].
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e Figures 13 and 14 show comparison of WMSE and PSNR e The expermental results were obtained by implementing

values, respectively, obtained from experimental results. It the algorithms and data hiding techniques in C++ (open
clearly shows that even for higher bitplanes the secret data source gcc) and (gray-scale) Lena bitmap as input image
can be reliably hidden with quite high PSNR value. Hence, file. Also the extraction algorithms that described for both
it will be difficult for the attacker to predict the secret embed- the techniques run at linear time in length of message
ding bitplane. embeded.

cover image

JiE= 22
Stege image with ddern data 81 in different bt planes )

Figure 12. Result of embedding secret datain different bit-planes using Natural Number decomposition technique
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Figure 14. Comparison of PSNR valuesfor different data hiding techniques

9. Conclusions

This chapter presented very simple methods of data hiding
technique using prime numbers / natural numbers. It is shown
(both theoretically and experimentally) that the data-hiding
technique using prime decomposition outperforms the
famous LSB data hiding technique using classical binary
decomposition and that using Fibonacci p-sequence
decomposition. Also, the technique using natural number
decomposition outperforms the one using prime
decomposition, when thought with respect to embedding
secret data bits at higher bit-planes (since number of virtual
bit-planes generated also increases) with less detectable
distortion. We have shown all our experimental results using
the famous Lena image, but since in all our theoretical
derivation above we have shown our test-statistic value
(WMSE, PSNR) independent of the probability mass function
of the gray levels of the input image, the (worst-case) result
will be similar if we use any gray-level image as input, instead
of the Lena image.
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