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Abstract—Particle Swarm Optimization (PSO) and Ant
Colony Optimization (ACO) algorithms have attracted the
interest of researchers due to their simplicity, effectiveness
and efficiency in solving real world optimization problems.
Swarm-inspired optimization has recently become very pop-
ular. Both ACO and PSO are successfully applied in the
Traveling Salesman Problem (TSP). Our approach consists
in combining Fuzzy Logic with ACO (FACO - Fuzzy Ant
Colony Optimization) and PSO (FPSO - Fuzzy Particle Swarm
Optimization ) for solving the TSP. Experimental results and
comparative studies illustrate the importance of Fuzzy logic in
reducing the time and the best length for the TSP problems
considered.

Keywords-Fuzzy Ant Colony Optimization; Fuzzy Particle
Swarm Optimization; Traveling Salesman Problem; Swarm
intelligence.

I. INTRODUCTION

The roots of swarm intelligence are set so deeply in
the study of self-organized behavior in social insects. It
was born from the incredible abilities of social insects to
solve their problems [1]. Their colonies incorporating either
few animals or millions of individuals show fascinating
behaviors, which combine the efficiency of the flexibility and
robustness [2]. The optimization using swarm intelligence
can be applied in different fields, covering swarm optimiza-
tion, distributed control of collective robotics or network
traffic management [3]-[5]. The reader may consult [6] for
some examples of complex and sophisticated behaviors of
social insects’ optimization paradigms.

Swarm intelligent methods are part of the meta-heuristic
family [7], [8] of algorithms, which is an iterative technique.
The latter reproduces a natural process of physical, chemical
or biological system with a self organization and evolving
capacities. Like in nature, it can search local optimal solu-
tions or global optimal solution using simple rules. In fact,
the results will depend partially on the problem that we
are solving and execution time limit (number of iteration
or stop condition). Usually heuristics are reserved for solv-
ing difficult optimization problems. Many heuristic search
methods have been used in a cooperative search environment
including Tabu Search (TS) [9], Genetic Algorithms (GA)

[10], [11], Ant Colony Optimization [12], [13] and Particle
Swarm Optimization [14], [15]. For all these methods, the
challenging issue is the choice of their parameters. For
example, in PSO, the number of iterations, the number of
particles and the choice of the fitness function are the key
elements that control how PSO will assess and explore the
search space.

Two popular swarm inspired methods are ant colony
optimization (ACO) and particle swarm optimization (PSO).
The PSO is simple and promising, and it requires less
computation time, though it faces difficulties for solving
discrete optimization problems [16], [17]. Whereas for ant
systems, inspired by the food-seeking behavior of real ants,
attributable to [18], they have demonstrated itself to be an
efficient and effective tool for optimization problems. But
the main problems of classical PSO and ACO algorithms
consist in the weak ability to find optimal solution as they
are missing a mechanism for parameter adaptation [19], [20].

In the literature, it has been demonstrated that combing
those algorithms with intelligent techniques provide better
results. Few researchers [21]-[23] used fuzzy logic to adapt
the inertia weight in PSO algorithms. Authors [24]-[26]
also proposed improved ACO algorithms using a fuzzy
pheromone updating mechanism. In this paper, we propose
a new fuzzy PSO (FPSO), and a new Fuzzy ACO (FACO)
algorithm. The main idea consists essentially in the use
of fuzzy logic in combination with the PSO and ACO
algorithms. For the PSO algorithm, we proposed a Fuzzy
System (FS) for the inertia weight update, whereas for the
ACO algorithm we propose a new fuzzy system for the the
weighting coefficient of the pheromone trails update. Both
FPSO and FACO are applied successfully to the Traveling
Salesman Problem (TSP).

This paper is organized as follows. Section 2 gives an
overview on PSO, ACO and FLS accomplishments. Section
3 presents the new methods namely Fuzzy PSO and Fuzzy
ACO. In Section 4, we illustrate experimental results and
comparative studies for the TSP problem. The paper is
concluded in Section 5.



II. FUNDAMENTALS OF PSO, ACO AND FLS
A. Particle Swarm Optimization

According to Kennedy [16] and Eberhart, a particle
moves according to its own position with respect to its
best neighborhood and to the best global position of the
swarm [27]. The best number is selected on the basis of a
limited search space and a fitness function. The best global
is selected from the best locals as the one how fits better
the fitness, maximizing or minimizing the cost depending
on the problem that the swarm is attempting to solve. The
system iterates but with a fixed number of iteration known
before launching the search process, that ensures the PSO
to converge to a solution, even if this one is not the best
one. Kennedy and Eberhart, in 1995 made the first attempt
to describe how this kind of social intelligence rose from
simple and implicit rules.
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where w is a parameter called the inertial weight; 7 =
1,2, ..., N indicates the number of particles of population
(swarm) t = 1,2,...tmas, indicates the generat10ns (it-
erations), v;; stands for the velocity of the ijt partlcle,
stands for the position of the ;" particle of population,
and represents the best previous position of the 75" particle.
Positive constants ¢l and c2 are the cognitive and social
factors, respectively, which are the acceleration constants
responsible for varying the particle velocity towards p;; and
Dig respectively. Index p;, represents the index of the best
particle among all the particles in the swarm. PSO have been
used successfully in several applications [28]-[30].

B. Ant Colony Optimization

The ant colony optimization was firstly proposed by
Dorigo et al. [31], [18]. The inspiration of the ACO al-
gorithms consists in the observation of real ant’s ability
to find the shortest path from a source of food to their
nest. Colorni [32] showed how a very simple pheromone
following behavior could be used to optimize the traveling
salesman problem [31]. The ant colony optimization was
based on the observation that ants would find the shortest
path around an obstacle separating their nest from a target
such as a piece of candy simmering on a summer sidewalk.
In fact, as ants move around they leave pheromone trails,
which dissipate over time and distance. The pheromone in-
tensity at a spot, that is the number of pheromone molecules,
which a wandering ant might encounter, is higher either
when ants have passed over the spot more recently or when
a greater number of ants have passed over the spot. Thus,
ants following pheromone trails will tend to congregate
simply from the fact that the pheromone density increases

with each additional ant that follows the trail. Dorigo [18]
focused on the fact that ants meandering from the nest to the
candy and back will return more quickly, and thus will pass
the same points more frequently, when following a shorter
path. Passing more frequently, they will lay down a denser
pheromone trail. If 7;; represents the quantity of pheromone
of ant;;, the ant path depends on the following probability:

(733 (£)*) (m:3)")

ZieJﬁ( ij ( )")(77”)
0 Si (i,7) ¢ JF

Si (i,§) € JF

PE(t) = )

Where the values 1);; are called heuristic information values,
that we get through some problem-specific heuristic. The
quantities 7;;(u) may depend on the entire partial path u
traversed.

C. Fuzzy Logic System (FLS)

Fuzzy logic was proposed by Zadeh [33]. Since then
it was successfully used in several applications [34]-[38].
FLS can handle uncertainties, imprecision and incomplete
data. Indeed it can model non-linerar systems and complex
functions. A Fuzzy Logic System (FLS) or a fuzzy expert
system is generally composed of three parts: fuzzification,
inference engine and defuzzification. The block diagram of
an FLC is shown in figure 1.

o The fuzzification part corresponds to the definition of
linguistic variables of inputs and outputs.

o The inference part corresponds to the definition of rules
describing the system working.

o The defuzzification part computes outputs command.

Input " Inference . Outpyt
Fuzzifier Engine Defuzzifier (iR
Figure 1. Architecture of a fuzzy controller

III. Fuzzy PSO aND Fuzzy ACO
A. Fuzzy PSO

In most general applications of the conventional PSO
algorithm, the inertia weight is used as a constant value.
The drawback of these works consisted in that they can
not provide any feedback about how far the fitness of the
particles are far from the optimal real values [39]. Hence
the need to use an intelligent method seems very logical
to overcome this point. Fuzzy logic was incorporated in
few works in the PSO algorithm for searching the inertia
parameter. Authors in [22] designed a nine rules’ fuzzy
system for evaluating the inertia parameter. We designed a
twelve rule fuzzy logic system for every particle letting to
have an accurate system to achieve better results. The first



input of the FLS is the normalized fitness of the current best
position, which is calculated as:

NFCBY = frea e O

Where fitness(pbest?) represents the best previous po-
sition’s fitness in the k*" iteration, of the i** particle.
fitness(pbest}) represents the fitness of the i*" particle
in the first iteration. It is generally the worst value for the
considered particle. Membership functions of this variable
are shown in Figure 2(a) and fitness,, is the real optimal

value.
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Figure 2. Membership functions of Inputs and Output

The second input of our FS is the current value of the
inertia weight w,; for the i*" particle. It is represented by
three membership functions,’Small’, "Medium’ and ’Large’
as illustrated in Figure 2(b).

Whereas the fuzzy ouput of our system is the variation
of the inertia weight Aw; which is illustrated in figure 2(c)
In the inference part of the FLS, we designed twelve rules,
which are illustrated in Table I and we used the min-max
Mamdani method. Whereas for the defuzzification part, we
used the centroid of sets method, which is the most used
method in literature that is computed using the following
equation: —

Aw; = 2o “)

B. Fuzzy ACO

Several works combined the use of fuzzy logic with ACO
as in [40], where authors proposed the fuzzified Ant K-
means Algorithm. They used fuzzy logic to classify data,

Table I
Fuzzy RULES OF FPSO

w; NFCBF
Small Medium Important Large
S LA LA LA LA
M SM ME ME ME
L SM SM SM SM

and then used the ACO idea. Fuzzy ant based clustering
algorithms were proposed in [41], [42]. Lefever and al. [42]
presented a fuzzy ant approach for clustering web people
search results. Others [41] used fuzzy ants in clustering web
search results.

Authors in [24] presented an adaptive o parameter, which
is the weighting coefficient of the pheromone trails 7;;. In
our work we presented a new adaptation of this parameter,
by using fuzzy logic. Hence we defined the o parameter as
a fuzzy value aé depending on the quantity of the present
pheromone trails 7;;. In fact the convergence of the ACO
algorithm depends strongly on the pheromone trails by this
it depends strongly on the aé- parameter. We proposed a
Mamdani type fuzzy system in which we defined the first
input the Normalized Weight of the current best position
expressed as follows:
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Membership functions of this variable are shown in figure 3

(a).
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Figure 3. Membership functions of Inputs and Output

The second input of the proposed FS is the oz;. param-



eter, which is presented using three membership functions
’Small’,Medium’ and ’Large’ as illustrated in Figure 3(b).
The output of the fuzzy system is the variation in the «
parameter which is denoted by Aa;i. This variable which
represents the correction variable for the o is represented
by three membership functions upon a universe of discourse
[—0.1 0.1]. The output variable is shown in Figure 3(c). We
elaborated nine rules as shown in Table II. The fuzzy system
is based upon the idea : best values of a will be near to the
maximum value as the purpose in the ACO algorithm is to
have the shortest path.

Table IT
Fuzzy RULES oF FACO
a; NWF
S M L

Small LA LA LA
Medium SM ME ME
Large SM SM SM

1V. EXPERIMENTAL RESULTS
A. TSP statement presentation

The traveling salesman problem is a classical example
of a combinatorial optimization problem, which has proved
to be NP-hard. In the TSP, the objective is to find the
salesman’s tour to visit all the N cities on his list once and
only once, returning to the starting point after traveling the
shortest possible distance. If we assume that the distance
from city ¢ to city j is the same as from city j to city @
(symmetrical TSP), and a tour is represented as an ordered
list of N cities. In this case, for N > 2 there is N!/2N
different tours (the same tour may be started from any city
from among N cities and traversed either clockwise or anti-
clockwise). Many methods are used for solving the TSP, e.g.:
the Lin-Kernighan algorithm, neural network [43] , Hopfield
network [44] and few others. Using PSO and ACO, many
solutions are also presented in the literature [45].

B. Experimental results

Experimental results illustrate the importance of fuzzy
logic in reducing the time and the best length for the TSP.
Comparisons with classical PSO and ACO and the results
achieved by the proposed FACO and FPSO are summarized
in Table III. In this Table, N denotes the number of nodes,
S.p: Size of population, T.FACO: the best Time of Fuzzy
PSO (per seconds), L.FACO: the best Length Fuzzy ACO,
T.ACO: the best Time for ACO (per seconds), L.ACO: the
best Length for ACO, T.FPSO: the best Time for Fuzzy
PSO (per seconds), L.FPSO: the best Length for Fuzzy PSO,
T.PSO: the best Time for PSO (per seconds) and L.PSO:
the best Length for PSO. We used 1000 iterations because
when tested 2000 and 3000 iterations we concluded that the
cycle numbers and time are proportionate to that of 1000
iterations. Our approach is coded in Matlab and run on

an Pentium (R) Dual core CPU 2 GHz PC with 2.92GB
memory. There are many parameters used for our approach:
The Size of population, which we increased three times, is
the number of nodes of the social and cognitive probabilities,
having c; and c», set as ¢; = co = 2. while the maximum of
velocity v is taken as 100 and dimension of space as 10. Both
« and S control the relative significance of pheromone trail
and distance between cities in TSP where 8 = 2. p refers to
the rate of pheromone evaporation p = 0.7. Each TSP run
is conducted for 5 times for 1000 iterations. Table III sums
up the new results and illustrates improved results published
in our previous work [30]. We notice that, more the size of
population the best length of FACO and FPSO decreases
and the execution time increases too. Indeed, from the same
Table, we can see that the execution time of PSO is better
compared to the ACO, which is normal since the PSO is
faster than ACO. For the length of the shortest path, PSO
is poor compared to that of the ACO. This illustrates the
importance of FACO and FPSO to find the best solution
and the best execution time.
V. CONCLUSIONS

Fuzzy Swarm intelligence was presented in this article as
an effective solution to solve TSP. We have proposed a new
Fuzzy PSO and a Fuzzy ACO algorithm. Comparative stud-
ies using the Traveling Salesman Problem (TSP), illustrate
the importance of Fuzzy logic in reducing the time and the
best length.
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