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Abstract

This article introduces a scheme for clustering complex and linearly non-separable datasets, without any prior knowledge of the num-
ber of naturally occurring groups in the data. The proposed method is based on a modified version of classical Particle Swarm Optimi-
zation (PSO) algorithm, known as the Multi-Elitist PSO (MEPSO) model. It also employs a kernel-induced similarity measure instead of
the conventional sum-of-squares distance. Use of the kernel function makes it possible to cluster data that is linearly non-separable in the
original input space into homogeneous groups in a transformed high-dimensional feature space. A new particle representation scheme
has been adopted for selecting the optimal number of clusters from several possible choices. The performance of the proposed method
has been extensively compared with a few state of the art clustering techniques over a test suit of several artificial and real life datasets.
Based on the computer simulations, some empirical guidelines have been provided for selecting the suitable parameters of the PSO
algorithm.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Clustering means the act of partitioning an unlabeled
dataset into groups of similar objects. Each group, called
a ‘cluster’, consists of objects that are similar between
themselves and dissimilar to objects of other groups. In
the past few decades, cluster analysis has played a central
role in diverse domains of science and engineering (Evang-
elou et al., 2001; Lillesand and Keifer, 1994; Andrews,
1972; Rao, 1971; Duda and Hart, 1973; Fukunaga, 1990;
Everitt, 1993; Hartigan, 1975).

Data clustering algorithms can be hierarchical or part-

itional (Frigui and Krishnapuram, 1999; Leung et al.,
2000). In hierarchical clustering, the output is a tree show-

ing a sequence of clustering with each cluster being a par-
tition of the data set (Leung et al., 2000). Partitional
clustering algorithms, on the other hand, attempts to
decompose the data set directly into a set of disjoint clus-
ters. They try to optimize certain criteria (e.g. a squared-
error function). The criterion function may emphasize the
local structure of the data, as by assigning clusters to peaks
in the probability density function, or the global structure.
Clustering can also be performed in two different modes:
crisp and fuzzy. In crisp clustering, the clusters are disjoint
and non-overlapping in nature. Any pattern may belong to
one and only one class in this case. In case of fuzzy cluster-
ing, a pattern may belong to all the classes with a certain
fuzzy membership grade (Jain et al., 1999). A comprehen-
sive survey of the various clustering algorithms can be
found in Jain et al. (1999).

The problem of partitional clustering has been
approached from diverse fields of knowledge like statistics
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(multivariate analysis) (Forgy, 1965), graph theory (Zahn,
1971), expectation maximization algorithms (Mitchell,
1997), artificial neural networks (Mao and Jain, 1995;
Pal et al., 1993; Kohonen, 1995), evolutionary computing
(Falkenauer, 1998; Paterlini and Minerva, 2003; Murthy
and Chowdhury, 1996; Bandyopadhyay and Maulik,
2002), swarm intelligence (Paterlinia and Krink, 2006;
Omran et al., 2005; Kanade and Hall, 2003) and so on.

The Euclidean distance metric, employed by most of the
existing partitional clustering algorithms, work well with
datasets in which the natural clusters are nearly hyper-
spherical and linearly separable (like the artificial dataset
1 used in this paper). But it causes severe misclassifications
when the dataset is complex, with linearly non-separable
patterns (like the synthetic datasets 2, 3 and 4 described
in Section 4 of the present paper). We would like to men-
tion here that, most evolutionary algorithms could poten-
tially work with an arbitrary distance function and are
not limited to the Euclidean distance.

Moreover, very few works (Bandyopadhyay and Mau-
lik, 2002; Hamerly and Elkan, 2003; Sarkar et al., 1997;
Omran et al., 2005) have been undertaken to make an algo-
rithm learn the correct number of clusters ‘k’ in a dataset,
instead of accepting the same as a user input. Although, the
problem of finding an optimal k is quite important from a
practical point of view, the research outcome is still unsat-
isfactory even for some of the benchmark datasets (Rosen-
berger and Chehdi, 2000).

In the present work, we propose a new approach
towards the problem of automatic clustering (without hav-
ing any prior knowledge of k initially) using a modified ver-
sion of the PSO algorithm (Kennedy and Eberhart, 1995).
Our procedure employs a kernel induced similarity mea-
sure instead of the conventional Euclidean distance metric.
A kernel function measures the distance between two data
points by implicitly mapping them into a high dimensional
feature space where the data is linearly separable. Not only
does it preserve the inherent structure of groups in the
input space, but also simplifies the associated structure of
the data patterns (Muller et al., 2001; Girolami, 2002). Sev-
eral kernel-based learning methods, including the Support
Vector Machine (SVM), have recently been shown to per-
form remarkably in supervised learning (Scholkopf and
Smola, 2002; Vapnik, 1998; Zhang and Chen, 2003; Zhang
and Rudnicky, 2002). The kernelized versions of the k-
means (Forgy, 1965) and the fuzzy c-means (FCM) (Bez-
dek, 1981) algorithms reported in Zhang and Rudnicky
(2002) and Zhang and Chen (2003) respectively, have
reportedly outperformed their original counterparts over
several test cases.

Now, we may summarize the new contributions made in
the paper as follows:

(i) Firstly, we develop an alternative framework for
learning the number of partitions in a dataset besides
the simultaneous refining of the clusters, through one
shot of optimization.

(ii) We propose a new version of the PSO algorithm
based on the multi-elitist strategy, well-known in
the field of evolutionary algorithms. Our experiments
indicate that the proposed MEPSO algorithm yields
more accurate results at a faster pace than the classi-
cal PSO in context to the present problem.

(iii) We reformulate a recently proposed cluster validity
index (known as the CS measure) (Chou et al.,
2004) using the kernelized distance metric. The new
CS measure forms the objective function to be mini-
mized for optimal clustering.

We have undertaken extensive performance compari-
sons in order to establish the effectiveness of the proposed
method in detecting clusters from several synthetic as well
as real world datasets. Some empirical guidelines for choos-
ing the parameters of the MEPSO based clustering algo-
rithm has been provided. Effect of the growth of feature-
space dimensionality on the performance of the algorithm
was also studied based on the real life datasets. The rest
of the paper is organised as follows: Section 2 briefly
describes the clustering problem, the kernel distance metric
and the reformulation of the CS measure. In Section 3, we
briefly outline the classical PSO and then introduce the
MEPSO algorithm. Section 4 describes the novel procedure
for automatic clustering with MEPSO. Experimental
results are presented and discussed in Section 5. Finally
the paper is concluded in Section 6.

2. Kernel based clustering and corresponding validity index

2.1. The crisp clustering problem

Let X ¼ f~x1;~x2; . . . ;~xng be a set of n unlabeled patterns
in the d-dimensional input space. Here, each element xi,j

in the ith vector~xi corresponds to the jth real valued feature
ðj ¼ 1; 2; . . . ; dÞ of the ith pattern ði ¼ 1; 2; . . . ; nÞ. Given
such a set, the partitional clustering algorithm tries to find
a partition C = {C1,C2, . . . ,Ck} of k classes, such that the
similarity of the patterns in the same cluster is maximum
and patterns from different clusters differ as far as possible.
The partitions should maintain the following properties:

(1) Ci 6¼ U "i 2 {1,2, . . . ,k}.
(2) Ci \ Cj = U "i 6¼ j and i,j 2 {1,2, . . . ,k}.
(3)

SK
i¼1Ci ¼ P .

The most popular way to evaluate similarity between
two patterns amounts to the use of the Euclidean distance,
which between any two d-dimensional patterns~xi and~xj is
given by

dð~xi;~xjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

p¼1

ðxi;p � xj;pÞ2
vuut ¼ k~xi �~xjk: ð1Þ
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2.2. The kernel based similarity measure

Given a dataset X in the d-dimensional real space Rd , let
us consider a non-linear mapping function from the input
space to a high dimensional feature space H:

u : Rd ! H ; ~xi ! uð~xiÞ; ð2Þ
where~xi ¼ ½xi;1; xi;2; . . . ; xi;d �T and

uð~xiÞ ¼ ½u1ð~xiÞ;u2ð~xiÞ; . . . ;uH ð~xiÞ�T:
By applying the mapping, a dot product ~xT

i � ~xj is trans-
formed into uTð~xiÞ � uð~xjÞ. Now, the central idea in ker-
nel-based learning is that the mapping function uneed
not be explicitly specified. The dot product uTð~xiÞ � uð~xjÞ
in the transformed space can be calculated through the ker-
nel function Kð~xi;~xjÞ in the input space Rd . Consider the
following simple example:

Example 1. Let d = 2 and H = 3 and consider the follow-
ing mapping: u : R2 ! H ¼ R3, and ½xi;1; xi;2�T ! ½x2

i;1;
ffiffiffi
2
p
�

xi;1xi;2; x2
i;2�

T. Now the dot product in feature space H:

uTð~xiÞ � uð~xjÞ¼ ½x2
i;1;

ffiffiffi
2
p
� xi;1xi;2;x2

i;2� � ½x2
j;1;

ffiffiffi
2
p
� xj;1 � xj;2;x2

j;2�
T

¼ ½xi;1 � xj;1þxi;2 � xj;2�2¼ ½~xT
i �~xj�2¼Kð~xi;~xjÞ:

Clearly the simple kernel function K is the square of the dot
product of vectors~xi and~xj in Rd .

Hence, the kernelized distance measure between two
patterns~xi and~xj is given by

kuð~xiÞ � uð~xjÞk2 ¼ ðuð~xiÞ � uð~xjÞÞTðuð~xiÞ � uð~xjÞÞ
¼ uTð~xiÞ � uð~xiÞ � 2 � uTð~xiÞ � uð~xjÞ
þ uTð~xjÞ � uð~xjÞ ¼ Kð~xi;~xiÞ � 2 � Kð~xi;~xjÞ
þ Kð~xj;~xjÞ: ð3Þ

Among the various kernel functions used in literature, in
the present context, we have chosen the well-known Gauss-
ian kernel (also referred to as the Radial Basis Function)
owing to its better classification accuracy over the linear
and polynomial kernels on many test problems (Girolami,
2002; Pirooznia et al.; Hertz et al., 2006; Dunn, 1974). The
Gaussian Kernel may be represented as

Kð~xi;~xjÞ ¼ exp �k~xi �~xjk2

2r2

 !
; ð4Þ

where r > 0. Clearly, for Gaussian kernel, Kð~xi;~xiÞ ¼1 and
thus relation (3) reduces to

kuð~xiÞ � uð~xjÞj2 ¼ 2 � ð1� Kð~xi;~xjÞÞ: ð5Þ

2.3. Reformulation of CS measure

Cluster validity indices correspond to the statistical–
mathematical functions used to evaluate the results of a
clustering algorithm on a quantitative basis. For crisp
clustering, some of the well-known indices available in the

literature are the Dunn’s index (DI) (Hertz et al., 2006;
Dunn, 1974), Calinski–Harabasz index (Calinski and
Harabasz, 1974), Davis–Bouldin (DB) index (Davies and
Bouldin, 1979), PBM index (Pakhira et al., 2004), and the
CS measure (Chou et al., 2004). In this work, we have
based our fitness function on the CS measure as according
to the authors, CS measure is more efficient in tackling
clusters of different densities and/or sizes than the other
popular validity measures, the price being paid in terms
of high computational load with increasing k and n (Chou
et al., 2004). Before applying the CS measure, centroid of a
cluster is computed by averaging the data vectors belong-
ing to that cluster using the formula,

~mi ¼
1

N i

X
xj2Ci

~xj: ð6Þ

A distance metric between any two data points~xi and~xj

is denoted by dð~xi;~xjÞ. Then the CS measure can be defined
as

CSðkÞ ¼
1
k

Pk
i¼1

1
Ni

P
~X i2Ci

max~X q2Ci
fdð~xi;~xqÞg

h i
1
k

Pk
i¼1½minj2K;j 6¼ifdð~mi; ~mjÞg�

¼
Pk

i¼1
1

Ni

P
~X i2Ci

max~X q2Ci
fdð~xi;~xqÞg

h i
Pk

i¼1½minj2K;j 6¼ifdð~mi; ~mjÞg�
: ð7Þ

Now, using a Gaussian kernelized distance measure and
transforming to the high dimensional feature space, the
CS measure reduces to (using relation (5)):

CSkernelðkÞ ¼
Pk

i¼1
1

Ni

P
~X i2Ci

max~X q2Ci
fkuð~xiÞ � uð~xqÞk2g

h i
Pk

i¼1½minj2k;j 6¼ifkuð~miÞ � uð~mjÞkg�

¼
Pk

i¼1
1

Ni

P
~X i2Ci

max~X q2Ci
f2ð1� Kð~xi;~xqÞÞg

h i
Pk

i¼1½minj2k;j 6¼if2ð1� Kð~mi; ~mjÞÞg�
ð8Þ

The minimum value of this CS measure indicates an opti-
mal partition of the dataset. The value of ‘k’ which mini-
mizes CSkernel(k) therefore gives the appropriate number
of clusters in the dataset.

3. The Multi-Elitist PSO (MEPSO) algorithm

The concept of Particle Swarms, although initially intro-
duced for simulating human social behaviors, has become
very popular these days as an efficient search and optimiza-
tion technique. In PSO, a population of conceptual ‘parti-
cles’ is initialized with random positions ~Zi and velocities
~V i, and a function, f, is evaluated, using the particle’s posi-
tional coordinates as input values. In an n-dimensional
search space, ~Zi ¼ ðZi1; Zi2; Zi3; . . . ; ZinÞ and ~V i ¼ ðV i1; V i2;
V i3; . . . ; V inÞ: Positions and velocities are adjusted, and
the function is evaluated with the new coordinates at each
time-step. The basic update equations for the dth dimen-
sion of the ith particle in PSO may be given as
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V idðt þ 1Þ ¼ x � V idðtÞ þ C1 � /1 � ðP lid � X idðtÞÞ
þC2 � /2 � ðP gd � X idðtÞÞ;

X idðt þ 1Þ ¼ X idðtÞ þ V idðt þ 1Þ:

9>=
>; ð9Þ

The variables /1 and /2 are random positive numbers,
drawn from a uniform distribution and defined by an upper
limit /max, which is a parameter of the system. C1 and C2

are called acceleration coefficients whereas x is called iner-
tia weight. ~P l is the local best solution found so far by the
ith particle, while ~P g represents the positional coordinates
of the fittest particle found so far in the entire community
or in some neighborhood of the current particle. Once the
iterations are terminated, most of the particles are expected
to converge to a small radius surrounding the global
optima of the search space.

The canonical PSO has been subjected to empirical and
theoretical investigations by several researchers (Eberhart
and Shi, 2001; Clerc and Kennedy, 2002). In many occa-
sions, the convergence is premature, especially if the swarm
uses a small inertia weight x or constriction coefficient
(Eberhart and Shi, 2001). As the global best found early
in the searching process may be a poor local minima, we
propose a multi-elitist strategy for searching the global best
of the PSO. We call the new variant of PSO the MEPSO.
The idea draws inspiration from the works reported in
Deb et al. (2002). We define a growth rate b for each par-
ticle. When the fitness value of a particle at the tth iteration
is higher than that of a particle at the (t � 1)th iteration,
the b will be increased. After the local best of all particles
are decided in each generation, we move the local best,
which has higher fitness value than the global best into
the candidate area. Then the global best will be replaced
by the local best with the highest growth rate b. The elitist
concept can prevent the swarm from tending to the global
best too early in the searching process. The MEPSO fol-
lows the g_best PSO topology in which the entire swarm
is treated as a single neighborhood The pseudo code about
MEPSO is as follows:

Procedure MEPSO
For t = 1 to tmax

For j = 1 to N // swarm size is N

If (the fitness value of particlej in tth time-
step> that of particle j in (t � 1)th time-step)

bj(t) = bj (t � 1) + 1;
End

Update Local best j.
If (the fitness of Local best j > that of Global best
now)

Choose Local best j put into candidate area.
End

End

Calculate b of every candidate, and record the candi-
date of bmax.

Update the Global best to become the candidate of
bmax.
Else

Update the Global best to become the particle of
highest fitness value.

End
End

4. The automatic clustering algorithm

4.1. Particle representation

In the proposed method, for n data points, each p-
dimensional, and for a user-specified maximum number
of clusters kmax, a particle is a vector of real numbers of
dimension kmax + kmax � p. The first kmax entries are posi-
tive floating-point numbers in (0, 1), each of which deter-
mines whether the corresponding cluster is to be
activated (i.e. to be really used for classifying the data) or
not. The remaining entries are reserved for kmax cluster cen-
ters, each p-dimensional. A single particle can be shown as

)(tZi =

Activation Threshhold Cluster Centroids

Ti,1 Ti,2 ..... Ti,kmax

i,kmax1,im 2,im
.......

m

The jth cluster center in the ith particle is active or
selected for partitioning the associated dataset if
Ti,j > 0.5. On the other hand, if Ti,j < 0.5, the particular
jth cluster is inactive in the ith particle. Thus the Ti,js
behave like control genes (we call them activation thresh-

olds) in the particle governing the selection of the active
cluster centers. The rule for selecting the actual number
of clusters specified by one chromosome is

IF T i;j > 0:5 THEN the jth cluster center ~mi;j is ACTIVE

ELSE ~mi;j is INACTIVE

ð10Þ
Consider the following example:

Example 2. Positional coordinates of one particular par-
ticle is illustrated below. There are at most five 3-dimen-
sional cluster centers among which, according to the rule
presented in (10) the second (6, 4.4, 7), third (5.3, 4.2, 5)
and fifth one (8, 4, 4) have been activated for partitioning
the dataset and marked in bold. The quality of the
partition yielded by such a particle can be judged by an
appropriate cluster validity index.

0.3 0.6 0.8 0.1 0.9   6.1 3.2 2.1 6 4.4 7 9.6 5.3 4.2 5 8 4.6 8 4 4
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During the PSO iterations, if some threshold T in a par-
ticle exceeds 1 or becomes negative, it is fixed to 1 or zero,
respectively. However, if it is found that no flag could be
set to one in a particle (all activation threshholds are smal-
ler than 0.5), we randomly select 2 thresholds and re-initial-
ize them to a random value between 0.5 and 1.0. Thus the
minimum number of possible clusters is 2.

4.2. The fitness function

One advantage of the proposed algorithm is that it can
use any suitable validity index as its fitness function. We
have used the kernelized CS measure as the basis of our fit-
ness function, which for ith particle can be described as

fi ¼
1

CSkerneliðkÞ þ eps
; ð11Þ

where eps is a very small constant (we used 0.0002). Max-
imization of fi implies a minimization of the kernelized CS
measure leading to the optimal partitioning of the dataset.

4.3. Avoiding erroneous particles with empty clusters or

unreasonable fitness evaluation

There is a possibility that in our scheme, during compu-
tation of the kernelized CS index, a division by zero may be
encountered. For example, the positive infinity (such as
4.0/0.0) or the not-a-number (such as 0.0/0.0) condition
always occurs when one of the selected cluster centers is
outside the boundary of distributions of data set as far as
possible. To avoid this problem we first check to see if in
any particle, any cluster has fewer than 2 data points in
it. If so, the cluster center positions of this special particle
are re-initialized by an average computation. If k clusters
(2 < k < kmax) are selected for this particle, we put n/k data
points for every individual activated cluster center, such
that a data point goes with a center that is nearest to it.

4.4. Putting it altogether

Step 1: Initialize each particle to contain k number of
randomly selected cluster centers and k (ran-
domly chosen) activation thresholds in [0,1].

Step 2: Find out the active cluster centers in each particle
with the help of the rule described in (10).

Step 3: For t = 1 to tmax do

(i) For each data vector ~X p, calculate its distance
metric dð~X p; ~mi;jÞ from all active cluster cen-
ters of the ith particle ~V i.

(ii) Assign ~X p to that particular cluster center ~mi;j

where dð~X p; ~mi;jÞ ¼ min8b2f1;2;...;kgfdð~X p; ~mi;bÞg.
(iii) Check if the number of data points belonging

to any cluster center mi,j is less than 2. If so,
update the cluster centers of the particle
using the concept of average described
earlier.

(iv) Change the population members according to
the MEPSO algorithm. Use the fitness of
the particles to guide the dynamics of the
swarm.

Step 4: Report as the final solution the cluster centers and
the partition obtained by the globally best particle
(one yielding the highest value of the fitness func-
tion) at time t = tmax.

5. Experimental results

5.1. General comparison with other clustering algorithms

To test the effectiveness of the proposed method, we
compare its performance with six other clustering algo-
rithms using a test-bed of five artificial and three real world
datasets. Among the other algorithms considered, there are
two recently developed automatic clustering algorithms
well- known as the GCUK (Genetic Clustering with an
Unknown number of clusters K) (Bandyopadhyay and
Maulik, 2002) and the DCPSO (Dynamic Clustering
PSO) (Omran et al., 2005). Moreover, in order to investi-
gate the effects of the changes made in the classical g_best

PSO algorithm, we have compared MEPSO with an ordin-
ary PSO based kernel-clustering method that uses the same
particle representation scheme and fitness function as the
MEPSO. Both the algorithms were let run on the same ini-
tial populations. The other algorithms are the kernel k-
means algorithm (Girolami, 2002; Zhang and Chen,
2003) and a kernelized version of the subtractive clustering
(Kim et al., 2005). Both the algorithms were provided with
the correct number of clusters as they are non-automatic.

We used datasets with a wide variety in the number and
shape of clusters, number of datapoints and the count of
features of each datapoint. The real life datasets used here
are the Glass, the Wisconsin breast cancer, the image seg-
mentation, the Japanese Vowel and the automobile (Blake
et al., 1998). The synthetic datasets included here, comes
with linearly non-separable clusters of different shapes (like
elliptical, concentric circular dish and shell, rectangular,
etc.). Brief details of the datasets have been provided in
Table 1. Scatterplot of the synthetic datasets have also been
shown in Fig. 1. The clustering results were judged using
Huang’s accuracy measure (Huang and Ng, 1999):

r ¼
Pk

i¼1ni

n
; ð12Þ

where ni is the number of data occurring in both the ith
cluster and its corresponding true cluster, and n is the total
number of data points in the data set. According to this
measure, a higher value of r indicates a better clustering re-
sult, with perfect clustering yielding a value of r = 1.

We used r = 1.1 for all the artificial datasets, r = 0.9 for
breast cancer dataset and r = 2.0 for the rest of the real life
datasets for the RBF kernel following (Camastra and
Verri, 2005). In these experiments, the kernel k-means
was run 100 times with the initial centroids randomly
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selected from the data set. A termination criterion of
e = 0.001. The parameters of the kernel-based subtractive
methods were set to a = 5.4 and b = 1.5 as suggested by
Pal and Chakraborty (2000). For all the competitive algo-
rithms, we have selected their best parameter settings as
reported in the corresponding literatures. The control
parameters for MEPSO where chosen after experimenting
with several possible values. Some of the experiments
focussing on the effects of parameter-tuning in MEPSO
has been reported in the next subsection. The same set of
parameters were used for all the test problems for all the
algorithms. These parameter settings have been reported
in Table 2.

Table 3 compares the algorithms on the quality of the
optimum solution as judged by the Huang’s measure.
The mean and the standard deviation (within parentheses)
for 40 independent runs (with different seeds for the ran-
dom number generator) of each of the six algorithms are
presented in Table 3. Missing values of standard deviation
in this table indicate a zero standard deviation. The best
solution in each case has been shown in bold. Table 4
shows results of unpaired t-tests between the better of the
new algorithm (MEPSO) and the best of the other five in
each case (standard error of difference of the two means,
95% confidence interval of this difference, the t value, and
the two-tailed P value). Tables 5 and 6 present the mean
and standard deviation of the number of classes found by
the three automatic clustering algorithms. In Fig. 1 we
present the clustering results on the synthetic datasets by
the new MEPSO algorithm (to save space we do not pro-
vide results for all the six algorithms).

For comparing the speed of the stochastic algorithms
like GA, PSO or DE, we choose number of fitness function

evaluations (FEs) as a measure of computation time
instead of generations or iterations. From the data pro-
vided in Table 3, we choose a threshold value of the classi-
fication accuracy for each dataset. This threshold value is
somewhat larger than the minimum accuracy attained by
each automatic clustering algorithm. Now we run an algo-
rithm on each dataset and stop as soon as it achieves the
proper number of clusters as well as the threshold accu-

racy. We then note down the number of fitness function
evaluations the algorithm takes. A lower number of FEs
corresponds to a faster algorithm. The speed comparison
results are provided in Table 7. The kernel k-means and
the subtractive clustering method are not included in this
table, as they are non-automatic and do not employ evolu-
tionary operators as in GCUK and PSO based methods.

A close scrutiny of Tables 3, 5 and 6 reveals that the ker-
nel based MEPSO algorithm performed markedly better as
compared to the other competitive clustering algorithms, in
terms of both accuracy and convergence speed. We note
that in general, the kernel based clustering methods outper-
form the GCUK or DCPSO algorithms (which do not use
the kernelized fitness function) especially on linearly non-
separable artificial datasets like synthetic_1, synthetic_2
and synthetic_5. Although the proposed method provided
a better clustering result than the other methods for Syn-
thetic_5 dataset, its accuracy for this data was lower than
the seven other data sets considered. This indicates that
the proposed approach is limited in its ability to classify
non-spherical clusters.

The PSO based methods (especially MEPSO) on average
took lesser computational time than the GCUK algorithm
over most of the datasets. One possible reason of this may
be the use of less complicated variation operators (like
mutation) in PSO as compared to the operators used for
GA.

We also note that the MEPSO performs much better
than the classical PSO based kernel-clustering scheme.
Since both the algorithms use same particle representation
and starts with the same initial population, difference in
their performance must be due to the difference in their
internal operators and parameter values. This demon-
strates the effectiveness of the multi-elitist strategy incorpo-
rated in the MEPSO algorithm.

5.2. Choice of parameters for MEPSO algorithm

The MEPSO has a number of control parameters that
affect its performance on different clustering problems. In
this section we discuss the influence of parameters like
swarm size, the inertia factor x and the acceleration factors
C1 and C2 on the Kernel_MEPSO algorithm.

(1) Swarm size: To investigate the effect of the swarm
size, the MEPSO was executed separately with 10–80
particles (keeping all other parameter settings same as
reported in Table 2) on all the datasets. In Fig. 2 we plot
the convergence behavior of the algorithm (average of
40 runs) on the image segmentation dataset (with 2310
datapoints and 19 features, it is the most complicated
synthetic dataset considered in this section) for different
population sizes. We omit the other results here to save
space. The results reveal that the number of particles
more than 40 gives more or less identical accuracy of
the final clustering results for MEPSO. This observation
is in accordance with Van den Bergh and Engelbrecht,

Table 1
Description of the datasets

Dateset Number of
datapoints (n)

Number of
clusters (k)

Data-
dimension (d)

Synthetic_1 500 2 2
Synthetic_2 52 2 2
Synthetic_3 400 4 3
Synthetic_4 250 5 2
Synthetic_5 600 2 2
Glass 214 6 9
Wine 178 3 13
Breast cancer 683 2 9
Image

segmentation
2310 7 19

Japanese vowel 640 9 12
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Fig. 1. Two- and three-dimensional synthetic datasets clustered with MEPSO.
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who in den Bergh and Engelbrecht (2001) showed that
though there is a slight improvement in the solution
quality with increasing swarm sizes, a larger swarm
increases the number of function evaluations to con-
verge to an error limit. For most of the problems, it
was found that keeping the swarm size 40 provides a
reasonable trade-off between the quality of the final
results and the convergence speed.

(2) The inertia factor x: Provided all other parameters
are fixed at the values shown in Table 2, the MEPSO
was run with several possible choices of the inertia fac-
tor x. Specifically we used a time-varying x (linearly
decreasing from 0.9 to 0.4 following Shi and Eberhart,
1999), random x (Eberhart and Shi, 2001), x = 0.1,
x = 0.5 and finally x = 0.794 (Kennedy and Eberhart,
1995). In Fig. 3, we show how the fitness of the globally

Table 3
Mean and standard deviation of the clustering accuracy (%) achieved by each clustering algorithm over 40 independent runs (each run continued up to
50,000 FEs for GCUK, DCPSO, Kernel_ PSO and Kernel_MEPSO)

Datasets Algorithms

Kernel k-means Kernel Sub_clust GCUK DC-PSO Kernel_ PSO Kernel_ MEPSO

Synthetic_1 83.45 (0.032) 87.28 54.98 (0.88) 57.84 (0.065) 90.56 (0.581) 99.45 (0.005)
Synthetic_2 71.32 (0.096) 75.73 65.82 (0.146) 59.91 (0.042) 61.41 (0.042) 80.92 (0.0051)
Synthetic_3 89.93 (0.88) 94.03 97.75 (0.632) 97.94 (0.093) 92.94 (0.193) 99.31 (0.001)
Synthetic_4 67.65 (0.104) 80.25 74.30 (0.239) 75.83 (0.033) 78.85 (0.638) 87.84 (0.362)
Synthetic_5 81.23 (0.127) 84.33 54.45 (0.348) 52.55 (0.209) 89.46 (0.472) 99.75 (0.001)
Glass 68.92 (0.032) 73.92 76.27 (0.327) 79.45 (0.221) 70.71 (0.832) 92.01 (0.623)
Wine 73.43 (0.234) 59.36 80.64 (0.621) 85.81 (0.362) 87.65 (0.903) 93.17 (0.002)
Breast cancer 66.84 (0.321) 70.54 73.22 (0.437) 78.19 (0.336) 80.49 (0.342) 86.35 (0.211)
Image segmentation 56.83 (0.641) 70.93 78.84 (0.336) 81.93 (1.933) 84.32 (0.483) 87.72 (0.982)
Japanese vowel 44.89 (0.772) 61.83 70.23 (1.882) 82.57 (0.993) 79.32 (2.303) 84.93 (2.292)
Average 72.28 75.16 74.48 76.49 77.58 91.65

Table 4
Results of unpaired t-tests on the data of Table 3

Datasets Std. Err t 95% Conf. Intvl Two-tailed P Significance

Synthetic_1 0.005 976.36 (�5.01, �4.98) <0.0001 Extremely significant
Synthetic_2 0.001 9094.7 (�7.19, �7.18) <0.0001 Extremely significant
Synthetic_3 0.015 129.88 (�1.94, �1.88) <0.0001 Extremely significant
Synthetic_4 0.057 132.61 (�7.70, �7.48) <0.0001 Extremely significant
Synthetic_5 0.075 137.88 (10.14, 10.44) <0.0001 Extremely significant
Glass 0.105 120.17 (�12.77, �12.35) <0.0001 Extremely significant
Wine 0.057 134.52 (�7.81, �7.58) <0.0001 Extremely significant
Breast cancer 0.063 130.07 (8.04, 8.28) <0.0001 Extremely significant
Image segmentation 0.173 19.6495 (3.055, 3.744) <0.0001 Extremely significant
Japanese vowel 0.395 5.9780 (�3.147, �1.574) <0.0001 Extremely significant

Table 2
Parameter settings for different competitor algorithms

GCUK DCPSO PSO MEPSO

Pop_size 70 Pop_size 100 Pop_ size 40 Pop_ size 40
Cross-over probability lc 0.85 Inertia weight 0.72 Inertia weight 0.75 Inertia weight 0.794
Mutation probability lm 0.005 C1, C2 1.494 C1, C2 2.00 C1, C2 0.35 ? 2.4, 2.4 ? 0.35

Pini 0.75
Kmax 20 Kmax 20 Kmax 20 Kmax 20
Kmin 2 Kmin 2 Kmin 2 Kmin 2

Table 5
Mean and standard deviation (in parentheses) of the number of clusters found over the synthetic datasets for four automatic clustering algorithms over 40
independent runs

Algorithms Synthetic _1 Synthetic _2 Synthetic _3 Synthetic _4 Synthetic _5

GCUK 2.50 (0.021) 3.05 (0.118) 4.15 (0.039) 9.85 (0.241) 4.25 (0.921)
DCPSO 2.45 (0.121) 2.80 (0.036) 4.25 (0.051) 9.05 (0.726) 6.05 (0.223)
Ordinary PSO 2.50 (0.026) 2.65 (0.126) 4.10 (0.062) 9.35 (0.335) 2.25 (0.361)
Kernel_MEPSO 2.10 (0.033) 2.15 (0.102) 4.00 (0.00) 10.05 (0.021) 2.05 (0.001)
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best particle (averaged over 40 runs) varies with no. of
FEs for the image segmentation dataset over different
values of x. It was observed that for all the problems
belonging to the current test suit, best convergence
behavior of MEPSO is observed for x = 0.794.
(3) The acceleration coefficients C1 and C2: Provided all
other parameters are fixed at the values given in Table
2, we let MEPSO run for different settings of the accel-
eration coefficients C1 and C2 as reported in various lit-
eratures on PSO. We used C1 = 0.7 and C2 = 1.4,
C1 = 1.4 and C2 = 0.7 (Shi and Eberhart, 1999),
C1 = C2 = 1.494 (Kennedy et al., 2001), C1 = C2 =
2.00 (Kennedy et al., 2001) and finally a time varying

acceleration coefficients where C1 linearly increases from
0.35 to 2.4 and C2 linearly decreases from 2.4 to 0.35
(Ratnaweera and Halgamuge, 2004). We noted that
the linearly varying acceleration coefficients gave the
best clustering results over all the problems considered.
This is perhaps due to the fact that an increasing C1

and gradually decreasing C2 boost the global search
over the entire search space during the early part of
the optimization and encourage the particles to converge
to global optima at the end of the search. Fig. 4 illus-
trates the convergence characteristics of MEPSO over
the image segmentation dataset for different settings of
C1 and C2.

Table 6
Mean and standard deviation (in parentheses) of the number of clusters found over the synthetic datasets for four automatic clustering algorithms over 40
independent runs

Algorithms Glass Wine Breast cancer Image segmentation Japanese vowel

GCUK 5.85 (0.035) 4.05 (0.021) 2.25 (0.063) 7.05 (0.008) 9.50 (0.218)
DCPSO 5.60 (0.009) 3.75 (0.827) 2.25 (0.026) 7.50 (0.057) 10.25 (1.002)
Ordinary PSO 5.75 (0.075) 3.00 (0.00) 2.00 (0.00) 7.20 (0.025) 9.25 (0.822)
Kernel_MEPSO 6.05 (0.015) 3.00 (0.00) 2.00 (0.00) 7.00 (0.00) 9.05 (0.021)

Table 7
Mean and standard deviations of the number of fitness function evaluations (over 40 successful runs) required by each algorithm to reach a predefined cut-
off value of the classification accuracy

Dateset Threshold accuracy (in %) GCUK DCPSO Ordinary PSO Kernel_MEPSO

Synthetic_1 50.00 48000.05 (21.43) 42451.15 (11.57) 43812.30 (2.60) 37029.65 (17.48)
Synthetic_2 55.00 41932.10 (12.66) 45460.25 (20.97) 40438.05 (18.52) 36271.05 (10.41)
Synthetic_3 85.00 40000.35 (4.52) 35621.05 (12.82) 37281.05 (7.91) 32035.55 (4.87)
Synthetic_4 65.00 46473.25 (7.38) 43827.65 (2.75) 42222.50 (2.33) 36029.05 (6.38)
Synthetic_5 50.00 43083.35 (5.30) 39392.05 (7.20) 42322.05 (2.33) 35267.45 (9.11)
Glass 65.00 47625.35 (6.75) 40382.15 (7.27) 38292.25 (10.32) 37627.05 (12.36)
Wine 55.00 44543.70 (44.89) 43425.00 (18.93) 3999.65 (45.90) 35221.15 (67.92)
Breast cancer 65.00 40390.00 (11.45) 37262.65 (13.64) 35872.05 (8.32) 32837.65 (4.26)
Image segmentation 55.00 39029.05 (62.09) 40023.25 (43.92) 35024.35 (101.26) 34923.22 (24.28)
Japanese vowel 40.00 40293.75 (23.33) 28291.60 (121.72) 29014.85 (21.67) 24023.95 (20.62)

Fig. 2. The convergence characteristics of the MEPSO over the Image
segmentation dataset for different population sizes.

Fig. 3. The convergence characteristics of the MEPSO over the Image
segmentation dataset for different inertia factors.
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5.3. Scalability of the kernel_MEPSO algorithm

In Section 5.1, we saw that the Kernel_MEPSO algo-
rithm outperformed its competitors over the 2 and 3
dimensional synthetic datasets as well as over the real life
datasets with dimensions ranging up to 19. In what follows,
we further investigate the effect of growth of the dimension-
ality of the feature space on the clustering performance of
Kernel_MEPSO. For this purpose, we used a few highly
complex synthetic datasets of dimensions 20, 40, 60, 80
and 100 obtained from the Gaussian and ellipsoidal cluster
generators available in www.dbk.ch.umist.ac.uk/handl/
generators/. The detailed statistical description of the gen-
erators can be found in Handl et al. (2005). Fig. 5 shows a
100 dimensional dataset with 10 elongated and arbitrarily
oriented clusters used in our experiment, when projected
in the first two dimensions.

In these experiments, we compare the Kernel_MEPSO
with GCUK, DCPSO and two scalable clustering algo-
rithms including BIRCH (Zhang et al., 1996) and MOCK
(MultiObjective Clustering with automatic K determina-
tion) (Handl and Knowles, 2005). We exclude the subspace
clustering algorithms like CLIQUE (Agrawal et al., 1998)
from this comparison, as they, unlike the algorithms being
dealt here, seek for meaningful clusters in a lower dimen-
sional subspace (a subset of the feature space dimensions).

Since our primary objective is to study the scalability
issues of the Kernel_MEPSO, we kept the number of clus-
ters as well as the number of datapoints same for all the
synthetic datasets generated for this purpose. Among the
algorithms compared, only BIRCH was provided with
the true number of classes in each case. Rest of the compet-
itors could determine the number of clusters on the run. In
Table 8, we report the mean number of classes found and
the mean classification accuracy over 25 independent runs
of all the competitor algorithms except BIRCH which
was run once for each problem as it is deterministic and
non-automatic. Fig. 6 shows how the CPU time consumed
by different stochastic algorithms varies with the data
dimensionality. For BIRCH we used the default parameter
values provided in Zhang et al. (1996). The CPU time was
measured on 1 Pentium IV, 2.2 GHz PC, with 512 KB
cache and 2 GB of main memory in Windows Server
2003 environment.

The results suggest that for data dimensionality lesser
than 40, the ability of Kernel_MEPSO to separate elliptical
and overlapped clusters is best among all the methods com-
pared. But as the dimension exceeds 60, the accuracy of
Kernel_MEPSO becomes comparable to BIRCH and
worse than the MOCK which employs a multi-objective
evolutionary algorithm. The version of MOCK used here
employs novel schemes for initialization and mutation that
enable a more efficient exploration of the search space. It
also modifies the null data model that is used as a basis

Fig. 4. The convergence characteristics of the MEPSO over the Image
segmentation dataset for different acceleration coefficients.

Fig. 5. 100-Dimensional data set containing 10 clusters (projected to two
dimensions).

Table 8
Mean and standard deviation of the number of classes found and clustering accuracy (%) achieved by each Clustering algorithm over 25 independent runs
(Each run continued up to 500,000 FEs for GCUK, DCPSO, MOCK and Kernel_MEPSO)

Dateset GCUK DCPSO BIRCH MOCK Kernel_MEPSO

k Found % Accuracy k Found % Accuracy % Accuracy k Found % Accuracy k Found % Accuracy

20d_10c 10.20 67.83 (2.8371) 10.50 75.88 (2.4918) 79.86 10.12 92.84 (3.2913) 10.00 93.29 (1.8382)
40d_10c 8.40 58.34 (5.9382) 8.12 56.88 (6.7382) 75.73 10.20 90.88 (4.9291) 10.08 91.84 (3.9932)
60d_10c 6.24 54.28 (4.0933) 8.36 53.25 (7.3855) 82.65 10.44 87.12 (3.289) 9.20 82.02 (1.9928)
80d_10c 5.88 43.23 (4.8256) 6.50 46.35 (5.30) 76.05 10.04 86.93 (5.9961) 8.40 67.82 (4.6617)
100d_10c 6.04 40.08 (1.4528) 5.60 42.35 (6.7587) 81.15 10.28 84.56 (2.0928) 7.44 58.93 (2.0931)
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for selecting the most significant solution from the Pareto
front.

We also note that although the final accuracy of Ker-
nel_MEPSO remains better than GCUK or DCPSO,
above 60 dimensions, the former over fits the data, finding
a larger number of clusters (than the true no. of classes) by
projecting data points to an even higher dimensional space.
Fig. 6 indicates that the runtime of kernel_MEPSO to con-
verge to a threshold accuracy value, above 40 dimensions
becomes worse than BIRCH and above 60 dimensions,
the speed of the algorithm is hardly acceptable in compar-
ison to that of both MOCK and BIRCH.

The deterioration of the performance of Ker-
nel_MEPSO is in accordance with (Evangelista et al.,
2006), which indicates that higher dimensionality con-
founds the process of kernel based learning especially in
presence of unbalanced classes. The curse of dimensionality
may be overcome in Kernel based clustering by utilizing the
subspace models. An efficient feature selection technique
may also be incorporated in the framework of the Ker-
nel_MEPSO clustering for this purpose.

6. Conclusions

This paper has presented a novel, modified PSO-based
strategy for hard clustering of complex data. An important
feature of the proposed technique is that it is able to find
the optimal number of clusters automatically (that is, the
number of clusters does not have to be known in advance)
for complex and linearly non-separable datasets. The pro-
posed kernel_MEPSO algorithm has been shown to meet
or beat the other state-of-the-art clustering algorithms in
a statistically meaningful way over several benchmark
datasets discussed here. This certainly does not lead us to
claim that it may outperform DCPSO or GCUK over
any dataset, since it is impossible to model all the possible
complexities of a real life data with the limited test-suit that
we used for testing the algorithms. In addition, the perfor-
mance of DCPSO and GCUK may also be enhanced by

modifying there fitness functions with a kernel induced dis-
tance metric. This renders itself to further research with
these algorithms.

We have provided empirical guidelines for choosing the
best suited parameters for the Kernel_MEPSO after a thor-
ough experimentation with many possible sets of values.

To investigate the effect of the growth of data dimension-
ality, we compared the performance of the Kernel_MEPSO
with one scalable clustering algorithm BIRCH and a multi
objective optimization based clustering algorithm MOCK
which uses special operators to handle the curse of dimen-
sionality issue. The test data used for these experiments
included five synthetic datasets of dimensions ranging from
20 to 100. The number of data points and that of the true
classes was kept same in all the datasets. It was observed
that, the final classification accuracy and the mean number
of classes found by the MEPSO deteriorate considerably
when the feature space dimensionality exceeds 40. Future
research should focus on improving the performance of
the algorithm over high dimensional datasets by incorpo-
rating some feature selection mechanism in it. Automatic
clustering in lower dimensional subspaces with MEPSO
may also be a worthy topic of further research.
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