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Abstract

A Distributed Intrusion Prediction and Prevention Sys-
tems (DIPPS) not only detects and prevents possible intru-
sions but also possesses the capability to predict possible
intrusions in a distributed network. Based on the DIPS sen-
sors, instead of merely preventing the attackers or blocking
traffic, we propose a fuzzy logic based online risk assess-
ment scheme. The key idea of DIPPS is to protect the net-
work(s) linked to assets, which are considered to be very
risky. To implement DIPPS we used a Distributed Intru-
sion Detection System (DIDS) with extended real time traffic
surveillance and online risk assessment. To model and pre-
dict the next step of an attacker, we used a Hidden Markov
Model (HMM) that captures the interaction between the at-
tacker and the network. The interaction between various
DIDS and integration of their output are achieved through a
HMM. The novelty of this paper is the detailed development
of Fuzzy Logic Controllers to estimate the various risk(s)
that are dependent on several other variables based on the
inputs from HMM modules and the DIDS agents. To de-
velop the fuzzy risk expert system, if-then fuzzy rules were
formulated based on interviews with security experts and
network administrators. Preliminary results indicate that
such a system is very practical for protecting assets which
are prone to attacks or misuse, i.e. highly at risk.

1. Modelling of DIPPS

1.1. Introduction

Intrusion Prevention Systems (IPS) are proactive defense
mechanisms designed to detect malicious packets embed-
ded in normal network traffic and stop intrusions dead,
blocking the offending traffic automatically before it does
any damage rather than simply raising an alert as, or after,

the malicious payload has been delivered. There are a num-
ber of challenges for the implementation of an IPS device
that does not come across when deploying passive-mode In-
trusion Detection System (IDS) products. These challenges
all stem from the fact that the IPS device is designed to work
in-line, presenting a potential choke point and single point
of failure. Some of these problems could be eliminated in a
distributed intrusion prevention system, where there is not a
single point of control and the problems are tackled as close
to its source of origin as possible. The main task of the IPS
is to discard all suspect packets immediately and block the
offending traffic flow as soon as possible. The suspicious
traffic may be re-routed to honeynets or honeypots for fur-
ther forensic analysis etc. An IPS should have a maximum
up time since it has the potential to close a vital network
path and thus, once again, causing a Self Denial of Service
(SDoS) condition. IPS should be computationally light and
also achieve high packet processing rates since it is essential
that its impact on overall network performance is minimal.
The IPS should minimize false positives since this can lead
to a SDoS. The IPS should be able to decide exactly which
malicious traffic is blocked and also provides a mechanism
for alerts and forensic analysis capabilities. Rest of the arti-
cle is organized as follows. Section 2 introduces DIPPS fol-
lowed by HMM in Section 3. Fuzzy modeling is illustrated
in Section 4 and experiment results are given in Section 5
followed by some Conclusions.

2. Distributed Intrusion Prediction and Pre-
vention Systems (DIPPS)

DIPS are simply a superset of the conventional IPS im-
plemented in a distributed environment. We consider IPS as
an integrated IDS with many additional functions as listed
in Section 1.1. Due to the distributed nature of IPS, the
implementation poses several challenges. The IDSs are em-
bedded inside software mobile agents and placed in the net-
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Figure 1. Architecture of a DIPPS element.

work to be monitored. An individual IDS may be con-
figured to detect a single attack, or it may detect several
types of attacks. Figure 1 illustrates the basic architecture
of a DIPPS element, which is controlled by a local con-
troller. In a large network, each DIPPS element communi-
cates/coordinates with other DIPPS local controllers and/or
a central controller. The HMM model processes the attack
data information from the various mobile agent IDS sen-
sors. IDS deployed are capable of detecting simple prob-
lems as well as serious denial of service type of attacks.
Based on the nature of the detected attack, the following
actions would be taken:

1. If the detected attack is simply a port scan or a probe,
the HMM model attempts to make a prediction of a
possible future attack based on the current distributed
attack patterns. Based on this prediction, the central
controller (or administrator) would take precautionary
measures to prevent future attacks. The central con-
troller would also make use of an online risk assess-
ment of the assets subjected to this possible serious at-

tack in the future.

2. If the detected attack is very serious, the central con-
troller would take necessary actions to re-configure
firewall rules or notify the administrator etc. Such se-
rious attacks would bypass the HMM model.

3. At any time any abnormal traffic rate is noted by the
monitor if a predetermined level is reached, the central
controller may take necessary actions to re-configure
firewall rules or notify the administrator etc.

In the DIPPS framework, each network component may
host one or more IDS located in a distributed network.
Since there will be a large number of flag generators, these
must be abstracted, analyzed, and condensed by a suitable
architecture before arriving at a final conclusion. Very of-
ten, it is to be noted that the event information, which is de-
tected by the IDS agents will follow a bottom up approach
for analysis and the various command and control flow will
follow a top-down approach. The physical location of IDS



agents may be fixed or mobile so as to monitor certain parts
of the network segments.

The co-operative intelligent agent network is one of
the most important components of the DIDS [1]. Ideally
these agents will be located on separate network segments,
and geographically separated. Communication among the
agents is done utilizing TCP/IP sockets. Agent modules
running on host machines are capable of data analysis and
to formulate adequate response actions and may be imple-
mented as read only and fragile. In the event of tamper-
ing or modification the agent reports to the server agent and
automatically ends its life. Agents residing in the individ-
ual analyzer/controllers consist of modules responsible for
agent regeneration, dispatch, updating and maintaining in-
trusion signatures and so on. These agents control the indi-
vidual IDS agents for monitoring the network, manage all
the communication and life cycle of the IDS agents and also
update the IDS agents with detection algorithms as well as
response and trace mechanisms.

3. Hidden Markov Model (HMM)

We model the interaction between the attackers and the
system by a Markov model, and we assume the system
to be in one of the following states; Normal (N) indicat-
ing that there is no ongoing suspicious activity, Intrusion
Attempt (IA) indicating suspicious activity against the net-
work, Intrusion in Progress (IP) indicating that one or more
attacker have started an attack against the system, and Suc-
cessfull Attack (SA) one or more attackers have already bro-
ken into the system. By using a Markov model, we assume
that next state transition only depend on current state, this
is known as the Markov assumption. To describe an IDS
Agent we extend the Markov model to a Hidden Markov
Model (HMM), by assuming that the alarms produced by
the HMM Agent only depend on the state of the system.
The word hidden indicates that the state of the system is not
possible to observe, but only observations (output from the
IDS Agents) that depend on the system state. Observations
from the IDS Agents are used to estimate the system state
distribution. One HMM model is used for each IDS Agent,
and the state estimation is updated for each new observation
from the IDS Agent. The state distribution is further used
to estimate the intrusion frequency. The use of HMM to
model the interaction between an attacker and a system is
based on [2, 5], and [6] explain how to model the interacton
between an attacker and a system using a Markov model.

4. Why Fuzzy Modeling?

If the problem to be solved can be described mathemati-
cally and there exist techniques to solve the problem by us-
ing reasonable computational power and time, this method

should be preferred. But for some real world problems no
solution is known at all, and for these problems heuristic
techniques may be the only practical solution. An heuristic
method is not guaranteed to give the best solution, but often
gives a satisfying solution. One way to make a heuristic so-
lution is to use previous experience and some general rules,
this is a very natural approach for humans.

Risk assessment is often done by human experts, because
there is no exact and mathematical solution to the problem.
Usually the human reasoning and perception process can-
not be expressed precisely. Different people have differ-
ent opinions about risk and the association of its dependent
variables, and fuzzy logic provides an excellent framework
to model this. The key idea is to capture knowledge or in-
formation from risk managers and security experts and to
embed this vital knowledge in the form of if-then rules in a
fuzzy inference system to automate the risk assessment.

4.1. Fuzzy Modeling of Risk

The difference between an ordinary crisp set and a fuzzy
set is that elements of a fuzzy set have a degree of member-
ship. An element (x, µA(x)) of a fuzzy set A is therefore
a pair where µA(x) is a membership function and repre-
sents the degree of membership for x in A. The x value
is called a crisp input, to indicate that it is a number. The
membership functions for intersections and unions of fuzzy
sets are normally constructed using the T-norm and the T-
conorm operators. The most frequently used T-norm opera-
tor is Tmin(a, b) = min(a, b) and the most frequently used
T-conorm operator is Tmax(a, b) = max(a, b).

The first step in the fuzzy inference system is to fuzzify
the inputs, that is using the membership functions to calcu-
late the degree of membership in different fuzzy sets. Next
step is to apply if-then rules. For a Mamdani fuzzy system
the if-then rules are of the form

if x is A and y is B then z = C (1)

where A,B, C are fuzzy sets, and the first part (between
if and then) is called the antecedent and the last part (af-
ter then) is called the consequent. Usually the T-norm
and T-conorm operators are used in the evaluation of the
antecedents and consequences respectively. After the if-
then rules have been applied the crisp output is calculated
through a process called defuzzification. But the most
widely used defuzzificaton technique is possibly the cen-
troid of an area:

ZCOA =

∫
Z

µA(z)zdz∫
Z

µA(z)dz
(2)

A unit consisting of fuzzification, rule evaluation and de-
fuzzification is called a Fuzzy logic controller (FLC). In this



paper we use a hierarchical structure where output from one
FLC is used as input to another FLC.

For the risk assessment, nine basic linguistic variables
are used that are processed using three Fuzzy Logic Con-
trollers (FLC1−FLC3). The three FLC’s represent Threat
Level, Vulnerability and Asset Value, which are three de-
rived linguistic variables. The derived linguistic variables
are then combined using FLC4 to compute the net Asset
Risk. This forms a hierarchical fuzzy system as shown in
Figure 1. In this research, we used a Mamdani fuzzy infer-
ence system.

Values for the input variables are estimated based on the
information from the HMM module, the DIDS and the traf-
fic rate monitor. To simplify the calculation of input val-
ues, we have used the same attack categories as proposed by
MIT Lincoln Laboratory - DARPA IDS evaluation datasets
IDS [4]. The local controller uses information from the
DIDS and the traffic rate monitor to predict which attack
category the next attack will fit into.

The following sub-sections are strongly based on some
of the principles of the FAIR method described in [3].

4.2. Fuzzy Modeling of Threat Level

Threat level is modeled using three linguistic variables:
intrusion frequency, probability of threat success and sever-
ity. Three Membership Functions (MF) are used for the
three inputs and the output variable.

Intrusion frequency describes the intensity of attack
against the asset that is subject to monitoring. To es-
timate the intrusion frequency we use the output from
the HMM module and count how often the probabil-
ity of being in state intrusion in progress exceeds a
specific limit. Intrusion frequency is measured as at-
tacks/unit time.

Probability for threat success is estimated based on out-
put from the DIDS, and describes how likely it is that
an attacker will mange to overcome the proactive con-
trols. The actual values are in the range 0 − 1 and is
stored in a lookup table.

Severity describes the impact of an attack on the asset.

All input variables to FLC1 have three different linguis-
tic values Low, Medium and High. The output from FLC1

is Threat Level, and Fig 2 illustrates the if-then rules im-
plemented in FLC1 as a fuzzy associative memory (FAM).
Figure 3 shows the controll surface view of FLC1 plotting
Threat Level as a function of Probability of Threat Success
and Intrusion Frequency.
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Figure 2. Sliced cube FAM representation of
FLC1

4.3. Fuzzy modeling of Vulnerability

The Vulnerability is estimated in FLC2. Vulnerability
may be defined as the probability that an asset will be un-
able to resist the action of a threat agent [3]. In this paper
we model vulnerability as a derived variable from Threat
Resistance and Threat Capability. Three MF are assigned
to each of the two input variables and the output variable.

Threat resistance is the strength of the security measures
compared to the forces the attacker might use. One
example of threat resistance is password length.

Threat capability is the level of force an attacker is capa-
ble of applying against an asset.
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The output variable from FLC2 is the vulnerability and the
if-then rules implemented in FLC2 is depicted in Figure 4,
and Figure 5 shows a control surface view of FLC2.
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Figure 5. Control Surface View of FLC2

4.4. Fuzzy modeling of Asset Value

The asset value is estimated in FLC3 and is derived from
three linguistic variables: Cost, Criticality, Sensitivity and
Recovery. An asset is any data, device or other component
that supports information-related activities, and which can
be affected in a manner that result in loss. For all the in-
put variables of FLC3, we used only two MF (to reduce
the number of if-then rules needed). Three MF are used for
the output variable. The if-then rules implemented in FLC3

is shown in Table 1. The first four columns represents the
input linguistic values: a the Cost, b Criticality, c Sensitiv-
ity and d Recovery. The last column labeled e represents
the output variable Asset Value. A control surface view of
FLC3 is shown in Figure 6.

Cost (a) Represents the cost associated with an asset that
have been stolen or destroyed

Criticality (b) Mainly characterizes the impact on an or-
ganization’s productivity. This attribute is related to
integrity and availability.

Sensitivity (c) Impact of confidential information being
disclosed.

Recovery (d) How fast the loss can be re-stored and the
asset be back to normal again.

Table 1. Rule table for FLC3.
Innput Output

Rule a b c d e
1 L L L L L
2 H L L L H
3 L H L L M
4 H H L L H
5 L L H L M
6 H L H L H
7 L H H L H
8 H H H L H
9 L L L H L

10 H L L H H
11 L H L H H
12 H H L H H
13 L L H H H
14 H L H H H
15 L H H H H
16 H H H H H
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4.5. Fuzzy Modeling of Risk

The risk is estimated by FLC4 and is based on the out-
put from the three fuzzy logic controllers FLC1 − FLC3.



For the input and output variables, three MF are used. The
if-then rules used in FLC4 is illustrated in Figure 7, and
Figure 8 shows a control surface view of FLC4.
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4.6. Lookup Table

All the input variables except the Intrusion Frequency is
decided based on the information received from the DIDS
agents about the the ongoing attack, represented by a map-
ping L(a) = y : A → Y from attack types a ∈ A =
{DoS,U2R,R2L,Pr} to a parameter tuple y ∈ Y = R8.
This function is implemented and referred to as a Lookup
Table and contains parameters for different attack types.
The information represents how vulnerable the system is to

different attacks according to the value of different assets.
These values have to be estimated by security experts.

For the risk assessment, two or three MF are proposed
for each input variable, and three MF for the output variable.
For two level input variables, we used the following two
trapezoidal MF to define the Low and High linguistic values.

µL2(x) = trap(x,−0.6,−0.2, 0.2, 0.6)
µH2(x) = trap(x, 0.4, 0.8, 1.2, 1.6), (3)

For three level input and output variables, we propose
two trapezoidal MF to define the Low and High linguis-
tic values and a triangular MF to define Medium linguistic
value (as illustrated below).

µL3(x) = trap(x,−0.4,−0.1, 0.1, 0.4)
µM3(x) = triang(x, 0.2, 0.5, 0.8)
µH3(x) = trap(x, 0.6, 0.9, 1.0, 1.4). (4)

The membership functions used for input variables with
three fuzzy sets are shown in Equation 5 and Figure 9.

All input variables are normalized and are members of
the crisp set X defined as X = {x|0 ≤ x ≤ 1, x ∈ R}.
The parameterized MF used are triangular Equation 5 and
the trapezoidal Equation 6.

triang(x, a, b, c) =


0 x < a

(x− a)/(b− a) a ≤ x ≤ b
(c− x)/(c− b) b ≤ x ≤ c

0 x > c
(5)

trap(x, a, b, c, d) =


0 x < a

(x− a)/(b− a) a ≤ x ≤ b
1 b ≤ x ≤ c

(d− x)/(d− c) c ≤ x ≤ d
0 x > d

(6)

All fuzzy if-then rules were formulated based on expert
knowledge.

5. Experiment Results

To illustrate the risk assessment, we have created two
lookup chart as shown in Tables 2 and 3. Specific informa-
tion about different attack categories is stored in a lookup
table. All values in the lookup table is scaled within the
range 0 − 1. The attack category used for the risk assess-
ment is based on inputs from the IDS agents and this value
is used to assign values to eight of the nine input variables.
Only the Intrusion Frequency is estimated based on the out-
put from the HMM module.



0.0 0.5 1.0

µL2
(x)

xD
eg

re
e

o
f
m

em
b
er

sh
ip

1.0

0.5

0.0

Low High

µH2
(x)

Figure 9. Two level membership function

Medium

0.0 0.5 1.0

µM3
(x) µH3

(x)

Low High

D
eg

re
e

o
f
m

em
b
er

sh
ip

1.0

0.5

0.0

µL3
(x)

x

Figure 10. Three level membership function

Attacks are broadly divided into the following four cat-
egories: denial of service, remote to local, user to root and
surveillance/probe.

A denial of service (DoS) attack is an attack where the
attacker consume so much memory or CPU time that the
legitimate users can not be served. Typical examples are
Ping of Death, SYN Flood and Mailbomb. This attack is
assumed to be easy to mount and indicated by high value
for Probability of Threat Success. For DoS, the severity
may be relatively low since it will not lead to much perma-
nent damage. In most cases, the system may be restored to
normal use once the attack is over.

An User to root (U2R) attack is an attack where an ordi-
nary user in the system gain root access by exploiting some
vulnerability in the system. Typical vulnerabilities that are
exploited is buffer overflow and pure environment sanita-
tion. A remote to local (R2L) attack is an attack where an
attacker without an account on the computer tries to exploit
some vulnerabilities to get access as an user of the com-
puter. Possible attack strategies can be to exploit buffer
overflows in network services software (imap, sendmail,
apache). U2R and R2L categories are the most danger-

Table 2. Lookup Table1
Attack Categories

Variable DoS U2R R2L PR
Intrusion frequency 0.25 0.25 0.25 0.25
Pr threat success 0.90 0.70 0.70 0.10
Severity 0.40 0.90 0.90 0.30
Threat level 0.28 0.44 0.44 0.32
Threat resistance 0.10 0.60 0.90 0.20
Threat capabilit 0.50 0.85 0.80 0.10
Vulnerability 0.86 0.85 0.50 0.50
Cost 0.30 0.30 0.30 0.30
Criticality 0.70 0.70 0.70 0.10
Sensitivity 0.15 0.85 0.85 0.20
Recovery 0.40 0.85 0.70 0.15
Asset value 0.50 0.85 0.85 0.15
Asset risk 0.34 0.50 0.50 0.40

ous, since by gaining root access, the attacker could do
almost everything with the system. Therefore a relatively
high value for the severity is used in the above table. We
assume the system to be well protected against U2R attacks
indicated by relatively low Probability of Threat Success.

When an attacker uses some automated tools like Ip-
sweep, Nmap or Satan to gather information about the net-
work and possible vulnerabilities we call it probing. This
attack is assumed to be easy to mount and could pave way
for further attacks.

Simulation results of the HMM is not reported in this
paper due to space limitations, but the reader may consult
[2] for some preliminary results.

Figure 11 illustrates the asset risk values for different in-
trusion frequency variations (0-1). For the different param-
eter settings (Tables 2 and 3), as evident from Figure 11,
the asset risk values show clear sensitivity for each attack
category. This also illustrates that the proposed system is
very adaptive for different attack categories under varying
conditions.

6. Conclusions

This paper proposed a detailed implementation of a
fuzzy logic based online risk assessment scheme, which
could aid the functioning of a Distributed Intrusion Predic-
tion and Prevention System (DIPPS) for protecting high risk
assets. The implementation of the proposed scheme is very
simple and the developed system is easy to interpret. Our
discussions with security experts and preliminary empirical
results indicate that such a system is very practical for pro-
tecting assets, which are prone to severe attacks or misuse.

In the current fuzzy risk expert system, fuzzy if-then
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Figure 11. Parameter sensitivity for different attack categories

Table 3. Lookup Table 2
Attack Categories

Variable DoS U2R R2L PR
Intrusion frequency 0.25 0.25 0.25 0.25
Pr threat success 0.70 0.70 0.50 0.10
Severity 0.50 0.90 0.70 0.45
Threat level 0.32 0.44 0.32 0.28
Threat resistance 0.20 0.80 0.70 0.20
Threat capabilit 0.40 0.80 0.80 0.10
Vulnerability 0.85 0.50 0.63 0.50
Cost 0.40 0.40 0.50 0.30
Criticality 0.60 0.80 0.80 0.10
Sensitivity 0.20 0.80 0.70 0.10
Recovery 0.30 0.80 0.50 0.25
Asset value 0.50 0.84 0.82 0.15
Asset risk 0.40 0.50 0.40 0.34

rules were formulated based on expert knowledge. Our fu-
ture research is targeted to develop adaptive fuzzy inference
systems when some preliminary data or knowledge related
to network risk is available. We also plan to investigate the
use of different fuzzy inference methods.
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